Update README
This commit is contained in:
		| @@ -106,10 +106,10 @@ to download this repo with submodules. | |||||||
| If you find that this project helps your research, please consider citing the related paper: | If you find that this project helps your research, please consider citing the related paper: | ||||||
| ``` | ``` | ||||||
| @inproceedings{dong2021autohas, | @inproceedings{dong2021autohas, | ||||||
|   title={{AutoHAS}: Efficient Hyperparameter and Architecture Search}, |   title     = {{AutoHAS}: Efficient Hyperparameter and Architecture Search}, | ||||||
|   author={Dong, Xuanyi and Tan, Mingxing and Yu, Adams Wei and Peng, Daiyi and Gabrys, Bogdan and Le, Quoc V}, |   author    = {Dong, Xuanyi and Tan, Mingxing and Yu, Adams Wei and Peng, Daiyi and Gabrys, Bogdan and Le, Quoc V}, | ||||||
|   booktitle = {International Conference on Learning Representations (ICLR) Workshop on Neural Architecture Search}, |   booktitle = {2nd Workshop on Neural Architecture Search at International Conference on Learning Representations (ICLR)}, | ||||||
|   year={2021} |   year      = {2021} | ||||||
| } | } | ||||||
| @article{dong2021nats, | @article{dong2021nats, | ||||||
|   title   = {{NATS-Bench}: Benchmarking NAS Algorithms for Architecture Topology and Size}, |   title   = {{NATS-Bench}: Benchmarking NAS Algorithms for Architecture Topology and Size}, | ||||||
|   | |||||||
| @@ -99,10 +99,10 @@ Some methods use knowledge distillation (KD), which require pre-trained models. | |||||||
| 如果您发现该项目对您的科研或工程有帮助,请考虑引用下列的某些文献: | 如果您发现该项目对您的科研或工程有帮助,请考虑引用下列的某些文献: | ||||||
| ``` | ``` | ||||||
| @inproceedings{dong2021autohas, | @inproceedings{dong2021autohas, | ||||||
|   title={{AutoHAS}: Efficient Hyperparameter and Architecture Search}, |   title     = {{AutoHAS}: Efficient Hyperparameter and Architecture Search}, | ||||||
|   author={Dong, Xuanyi and Tan, Mingxing and Yu, Adams Wei and Peng, Daiyi and Gabrys, Bogdan and Le, Quoc V}, |   author    = {Dong, Xuanyi and Tan, Mingxing and Yu, Adams Wei and Peng, Daiyi and Gabrys, Bogdan and Le, Quoc V}, | ||||||
|   booktitle = {International Conference on Learning Representations (ICLR) Workshop on Neural Architecture Search}, |   booktitle = {2nd Workshop on Neural Architecture Search at International Conference on Learning Representations (ICLR)}, | ||||||
|   year={2021} |   year      = {2021} | ||||||
| } | } | ||||||
| @article{dong2021nats, | @article{dong2021nats, | ||||||
|   title   = {{NATS-Bench}: Benchmarking NAS Algorithms for Architecture Topology and Size}, |   title   = {{NATS-Bench}: Benchmarking NAS Algorithms for Architecture Topology and Size}, | ||||||
|   | |||||||
							
								
								
									
										118
									
								
								notebooks/NATS-Bench/BayesOpt.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										118
									
								
								notebooks/NATS-Bench/BayesOpt.ipynb
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,118 @@ | |||||||
|  | { | ||||||
|  |  "cells": [ | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 8, | ||||||
|  |    "id": "german-madonna", | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [], | ||||||
|  |    "source": [ | ||||||
|  |     "# Implementation for \"A Tutorial on Bayesian Optimization\"\n", | ||||||
|  |     "import numpy as np\n", | ||||||
|  |     "\n", | ||||||
|  |     "def get_data():\n", | ||||||
|  |     "    return np.random.random(2) * 10\n", | ||||||
|  |     "\n", | ||||||
|  |     "def f(x):\n", | ||||||
|  |     "    return float(np.power((x[0] * 3 - x[1]), 3) - np.exp(x[1]) + np.power(x[0], 2))" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 12, | ||||||
|  |    "id": "broke-citizenship", | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [], | ||||||
|  |    "source": [ | ||||||
|  |     "# Kernels typically have the property that points closer in the input space are more strongly correlated\n", | ||||||
|  |     "# i.e., if |x1 - x2| < |x1 - x3|, then sigma(x1, x2) > sigma(x1, x3).\n", | ||||||
|  |     "# the commonly used and simple kernel is the power exponential or Gaussian kernel:\n", | ||||||
|  |     "def sigma0(x1, x2, alpha0=1, alpha=[1,1]):\n", | ||||||
|  |     "    \"\"\"alpha could be a vector\"\"\"\n", | ||||||
|  |     "    power = np.array(alpha, dtype=np.float32) * np.power(np.array(x1)-np.array(x2), 2)\n", | ||||||
|  |     "    return alpha0 * np.exp( -np.sum(power) )\n", | ||||||
|  |     "\n", | ||||||
|  |     "# the most common choice for the mean function is a constant value\n", | ||||||
|  |     "def mu0(x, mu):\n", | ||||||
|  |     "    return mu" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 13, | ||||||
|  |    "id": "aerial-carnival", | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [], | ||||||
|  |    "source": [ | ||||||
|  |     "K = 5\n", | ||||||
|  |     "X = np.array([get_data() for i in range(K)])\n", | ||||||
|  |     "mu = np.mean(X, axis=0)\n", | ||||||
|  |     "mu0_over_K = [mu0(x, mu) for x in X]" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 14, | ||||||
|  |    "id": "polished-discussion", | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [], | ||||||
|  |    "source": [ | ||||||
|  |     "sigma0_over_KK = []\n", | ||||||
|  |     "for i in range(K):\n", | ||||||
|  |     "    sigma0_over_KK.append(np.array([sigma0(X[i], X[j]) for j in range(K)]))\n", | ||||||
|  |     "sigma0_over_KK = np.array(sigma0_over_KK)" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": 16, | ||||||
|  |    "id": "comic-jesus", | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "name": "stdout", | ||||||
|  |      "output_type": "stream", | ||||||
|  |      "text": [ | ||||||
|  |       "(20, 20)\n", | ||||||
|  |       "1.1038803861344952e-06\n", | ||||||
|  |       "1.1038803861344952e-06\n" | ||||||
|  |      ] | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|  |    "source": [ | ||||||
|  |     "print(sigma0_over_KK.shape)\n", | ||||||
|  |     "print(sigma0_over_KK[1][2])\n", | ||||||
|  |     "print(sigma0_over_KK[2][1])" | ||||||
|  |    ] | ||||||
|  |   }, | ||||||
|  |   { | ||||||
|  |    "cell_type": "code", | ||||||
|  |    "execution_count": null, | ||||||
|  |    "id": "statistical-wrist", | ||||||
|  |    "metadata": {}, | ||||||
|  |    "outputs": [], | ||||||
|  |    "source": [] | ||||||
|  |   } | ||||||
|  |  ], | ||||||
|  |  "metadata": { | ||||||
|  |   "kernelspec": { | ||||||
|  |    "display_name": "Python 3", | ||||||
|  |    "language": "python", | ||||||
|  |    "name": "python3" | ||||||
|  |   }, | ||||||
|  |   "language_info": { | ||||||
|  |    "codemirror_mode": { | ||||||
|  |     "name": "ipython", | ||||||
|  |     "version": 3 | ||||||
|  |    }, | ||||||
|  |    "file_extension": ".py", | ||||||
|  |    "mimetype": "text/x-python", | ||||||
|  |    "name": "python", | ||||||
|  |    "nbconvert_exporter": "python", | ||||||
|  |    "pygments_lexer": "ipython3", | ||||||
|  |    "version": "3.8.8" | ||||||
|  |   } | ||||||
|  |  }, | ||||||
|  |  "nbformat": 4, | ||||||
|  |  "nbformat_minor": 5 | ||||||
|  | } | ||||||
		Reference in New Issue
	
	Block a user