diff --git a/exps/GeMOSA/basic-same.py b/exps/GeMOSA/basic-same.py index 0660385..25cd445 100644 --- a/exps/GeMOSA/basic-same.py +++ b/exps/GeMOSA/basic-same.py @@ -4,6 +4,7 @@ # python exps/GeMOSA/basic-same.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1 --device cuda # python exps/GeMOSA/basic-same.py --env_version v2 --hidden_dim 16 --epochs 500 --init_lr 0.1 --device cuda # python exps/GeMOSA/basic-same.py --env_version v3 --hidden_dim 32 --epochs 1000 --init_lr 0.05 --device cuda +# python exps/GeMOSA/basic-same.py --env_version v4 --hidden_dim 32 --epochs 1000 --init_lr 0.05 --device cuda ##################################################### import sys, time, copy, torch, random, argparse from tqdm import tqdm @@ -28,7 +29,12 @@ from xautodl.log_utils import AverageMeter, convert_secs2time from xautodl.utils import split_str2indexes from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn -from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric +from xautodl.procedures.metric_utils import ( + SaveMetric, + MSEMetric, + Top1AccMetric, + ComposeMetric, +) from xautodl.datasets.synthetic_core import get_synthetic_env from xautodl.models.xcore import get_model @@ -57,6 +63,17 @@ def main(args): logger.log("The total enviornment: {:}".format(env)) w_containers = dict() + if env.meta_info["task"] == "regression": + criterion = torch.nn.MSELoss() + metric_cls = MSEMetric + elif env.meta_info["task"] == "classification": + criterion = torch.nn.CrossEntropyLoss() + metric_cls = Top1AccMetric + else: + raise ValueError( + "This task ({:}) is not supported.".format(all_env.meta_info["task"]) + ) + per_timestamp_time, start_time = AverageMeter(), time.time() for idx, (future_time, (future_x, future_y)) in enumerate(env): @@ -79,7 +96,6 @@ def main(args): print(model) # build optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True) - criterion = torch.nn.MSELoss() lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[ @@ -89,7 +105,7 @@ def main(args): ], gamma=0.3, ) - train_metric = MSEMetric() + train_metric = metric_cls(True) best_loss, best_param = None, None for _iepoch in range(args.epochs): preds = model(historical_x) @@ -108,19 +124,19 @@ def main(args): train_metric(preds, historical_y) train_results = train_metric.get_info() - metric = ComposeMetric(MSEMetric(), SaveMetric()) + xmetric = ComposeMetric(metric_cls(True), SaveMetric()) eval_dataset = torch.utils.data.TensorDataset( future_x.to(args.device), future_y.to(args.device) ) eval_loader = torch.utils.data.DataLoader( eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0 ) - results = basic_eval_fn(eval_loader, model, metric, logger) + results = basic_eval_fn(eval_loader, model, xmetric, logger) log_str = ( "[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, len(env)) - + " train-mse: {:.5f}, eval-mse: {:.5f}".format( - train_results["mse"], results["mse"] + + " train-score: {:.5f}, eval-score: {:.5f}".format( + train_results["score"], results["score"] ) ) logger.log(log_str) diff --git a/exps/GeMOSA/main.py b/exps/GeMOSA/main.py index 52258ff..6824179 100644 --- a/exps/GeMOSA/main.py +++ b/exps/GeMOSA/main.py @@ -1,12 +1,16 @@ -##################################################### -# Learning to Generate Model One Step Ahead # -##################################################### +########################################################## +# Learning to Efficiently Generate Models One Step Ahead # +########################################################## +# <----> run on CPU # python exps/GeMOSA/main.py --env_version v1 --workers 0 +# <----> run on a GPU # python exps/GeMOSA/main.py --env_version v1 --lr 0.002 --hidden_dim 16 --meta_batch 256 --device cuda # python exps/GeMOSA/main.py --env_version v2 --lr 0.002 --hidden_dim 16 --meta_batch 256 --device cuda # python exps/GeMOSA/main.py --env_version v3 --lr 0.002 --hidden_dim 32 --time_dim 32 --meta_batch 256 --device cuda # python exps/GeMOSA/main.py --env_version v4 --lr 0.002 --hidden_dim 32 --time_dim 32 --meta_batch 256 --device cuda -##################################################### +# <----> ablation commands +# python exps/GeMOSA/main.py --env_version v4 --lr 0.002 --hidden_dim 32 --time_dim 32 --meta_batch 256 --ablation old --device cuda +########################################################## import sys, time, copy, torch, random, argparse from tqdm import tqdm from copy import deepcopy @@ -36,6 +40,7 @@ from xautodl.models.xcore import get_model from xautodl.procedures.metric_utils import MSEMetric, Top1AccMetric from meta_model import MetaModelV1 +from meta_model_ablation import MetaModel_TraditionalAtt def online_evaluate( @@ -230,7 +235,13 @@ def main(args): # pre-train the hypernetwork timestamps = trainval_env.get_timestamp(None) - meta_model = MetaModelV1( + if args.ablation is None: + MetaModel_cls = MetaModelV1 + elif args.ablation == "old": + MetaModel_cls = MetaModel_TraditionalAtt + else: + raise ValueError("Unknown ablation : {:}".format(args.ablation)) + meta_model = MetaModel_cls( shape_container, args.layer_dim, args.time_dim, @@ -373,6 +384,9 @@ if __name__ == "__main__": parser.add_argument( "--workers", type=int, default=4, help="The number of workers in parallel." ) + parser.add_argument( + "--ablation", type=str, default=None, help="The ablation indicator." + ) parser.add_argument( "--device", type=str, @@ -385,7 +399,7 @@ if __name__ == "__main__": if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) assert args.save_dir is not None, "The save dir argument can not be None" - args.save_dir = "{:}-bs{:}-d{:}_{:}_{:}-s{:}-lr{:}-wd{:}-e{:}-env{:}".format( + args.save_dir = "{:}-bs{:}-d{:}_{:}_{:}-s{:}-lr{:}-wd{:}-e{:}-ab{:}-env{:}".format( args.save_dir, args.meta_batch, args.hidden_dim, @@ -395,6 +409,7 @@ if __name__ == "__main__": args.lr, args.weight_decay, args.epochs, + args.ablation, args.env_version, ) main(args) diff --git a/exps/GeMOSA/meta_model.py b/exps/GeMOSA/meta_model.py index 0d2e1bf..dde028b 100644 --- a/exps/GeMOSA/meta_model.py +++ b/exps/GeMOSA/meta_model.py @@ -1,6 +1,3 @@ -##################################################### -# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # -##################################################### import torch import torch.nn.functional as F diff --git a/exps/GeMOSA/meta_model_ablation.py b/exps/GeMOSA/meta_model_ablation.py new file mode 100644 index 0000000..c904b75 --- /dev/null +++ b/exps/GeMOSA/meta_model_ablation.py @@ -0,0 +1,260 @@ +# +# This is used for the ablation studies: +# The meta-model in this file uses the traditional attention in +# transformer. +# +import torch + +import torch.nn.functional as F + +from xautodl.xlayers import super_core +from xautodl.xlayers import trunc_normal_ +from xautodl.models.xcore import get_model + + +class MetaModel_TraditionalAtt(super_core.SuperModule): + """Learning to Generate Models One Step Ahead (Meta Model Design).""" + + def __init__( + self, + shape_container, + layer_dim, + time_dim, + meta_timestamps, + dropout: float = 0.1, + seq_length: int = None, + interval: float = None, + thresh: float = None, + ): + super(MetaModel_TraditionalAtt, self).__init__() + self._shape_container = shape_container + self._num_layers = len(shape_container) + self._numel_per_layer = [] + for ilayer in range(self._num_layers): + self._numel_per_layer.append(shape_container[ilayer].numel()) + self._raw_meta_timestamps = meta_timestamps + assert interval is not None + self._interval = interval + self._thresh = interval * seq_length if thresh is None else thresh + + self.register_parameter( + "_super_layer_embed", + torch.nn.Parameter(torch.Tensor(self._num_layers, layer_dim)), + ) + self.register_parameter( + "_super_meta_embed", + torch.nn.Parameter(torch.Tensor(len(meta_timestamps), time_dim)), + ) + self.register_buffer("_meta_timestamps", torch.Tensor(meta_timestamps)) + self._time_embed_dim = time_dim + self._append_meta_embed = dict(fixed=None, learnt=None) + self._append_meta_timestamps = dict(fixed=None, learnt=None) + + self._tscalar_embed = super_core.SuperDynamicPositionE( + time_dim, scale=1 / interval + ) + + # build transformer + self._trans_att = super_core.SuperQKVAttention( + in_q_dim=time_dim, + in_k_dim=time_dim, + in_v_dim=time_dim, + num_heads=4, + proj_dim=time_dim, + qkv_bias=True, + attn_drop=None, + proj_drop=dropout, + ) + + model_kwargs = dict( + config=dict(model_type="dual_norm_mlp"), + input_dim=layer_dim + time_dim, + output_dim=max(self._numel_per_layer), + hidden_dims=[(layer_dim + time_dim) * 2] * 3, + act_cls="gelu", + norm_cls="layer_norm_1d", + dropout=dropout, + ) + self._generator = get_model(**model_kwargs) + + # initialization + trunc_normal_( + [self._super_layer_embed, self._super_meta_embed], + std=0.02, + ) + + def get_parameters(self, time_embed, attention, generator): + parameters = [] + if time_embed: + parameters.append(self._super_meta_embed) + if attention: + parameters.extend(list(self._trans_att.parameters())) + if generator: + parameters.append(self._super_layer_embed) + parameters.extend(list(self._generator.parameters())) + return parameters + + @property + def meta_timestamps(self): + with torch.no_grad(): + meta_timestamps = [self._meta_timestamps] + for key in ("fixed", "learnt"): + if self._append_meta_timestamps[key] is not None: + meta_timestamps.append(self._append_meta_timestamps[key]) + return torch.cat(meta_timestamps) + + @property + def super_meta_embed(self): + meta_embed = [self._super_meta_embed] + for key in ("fixed", "learnt"): + if self._append_meta_embed[key] is not None: + meta_embed.append(self._append_meta_embed[key]) + return torch.cat(meta_embed) + + def create_meta_embed(self): + param = torch.Tensor(1, self._time_embed_dim) + trunc_normal_(param, std=0.02) + param = param.to(self._super_meta_embed.device) + param = torch.nn.Parameter(param, True) + return param + + def get_closest_meta_distance(self, timestamp): + with torch.no_grad(): + distances = torch.abs(self.meta_timestamps - timestamp) + return torch.min(distances).item() + + def replace_append_learnt(self, timestamp, meta_embed): + self._append_meta_timestamps["learnt"] = timestamp + self._append_meta_embed["learnt"] = meta_embed + + @property + def meta_length(self): + return self.meta_timestamps.numel() + + def clear_fixed(self): + self._append_meta_timestamps["fixed"] = None + self._append_meta_embed["fixed"] = None + + def clear_learnt(self): + self.replace_append_learnt(None, None) + + def append_fixed(self, timestamp, meta_embed): + with torch.no_grad(): + device = self._super_meta_embed.device + timestamp = timestamp.detach().clone().to(device) + meta_embed = meta_embed.detach().clone().to(device) + if self._append_meta_timestamps["fixed"] is None: + self._append_meta_timestamps["fixed"] = timestamp + else: + self._append_meta_timestamps["fixed"] = torch.cat( + (self._append_meta_timestamps["fixed"], timestamp), dim=0 + ) + if self._append_meta_embed["fixed"] is None: + self._append_meta_embed["fixed"] = meta_embed + else: + self._append_meta_embed["fixed"] = torch.cat( + (self._append_meta_embed["fixed"], meta_embed), dim=0 + ) + + def gen_time_embed(self, timestamps): + # timestamps is a batch of timestamps + [B] = timestamps.shape + # batch, seq = timestamps.shape + timestamps = timestamps.view(-1, 1) + meta_timestamps, meta_embeds = self.meta_timestamps, self.super_meta_embed + timestamp_v_embed = meta_embeds.unsqueeze(dim=0) + timestamp_q_embed = self._tscalar_embed(timestamps) + timestamp_k_embed = self._tscalar_embed(meta_timestamps.view(1, -1)) + + # create the mask + mask = ( + torch.unsqueeze(timestamps, dim=-1) <= meta_timestamps.view(1, 1, -1) + ) | ( + torch.abs( + torch.unsqueeze(timestamps, dim=-1) - meta_timestamps.view(1, 1, -1) + ) + > self._thresh + ) + timestamp_embeds = self._trans_att( + timestamp_q_embed, timestamp_k_embed, timestamp_v_embed, mask + ) + return timestamp_embeds[:, -1, :] + + def gen_model(self, time_embeds): + B, _ = time_embeds.shape + # create joint embed + num_layer, _ = self._super_layer_embed.shape + # The shape of `joint_embed` is batch * num-layers * input-dim + joint_embeds = torch.cat( + ( + time_embeds.view(B, 1, -1).expand(-1, num_layer, -1), + self._super_layer_embed.view(1, num_layer, -1).expand(B, -1, -1), + ), + dim=-1, + ) + batch_weights = self._generator(joint_embeds) + batch_containers = [] + for weights in torch.split(batch_weights, 1): + batch_containers.append( + self._shape_container.translate(torch.split(weights.squeeze(0), 1)) + ) + return batch_containers + + def forward_raw(self, timestamps, time_embeds, tembed_only=False): + raise NotImplementedError + + def forward_candidate(self, input): + raise NotImplementedError + + def easy_adapt(self, timestamp, time_embed): + with torch.no_grad(): + timestamp = torch.Tensor([timestamp]).to(self._meta_timestamps.device) + self.replace_append_learnt(None, None) + self.append_fixed(timestamp, time_embed) + + def adapt(self, base_model, criterion, timestamp, x, y, lr, epochs, init_info): + distance = self.get_closest_meta_distance(timestamp) + if distance + self._interval * 1e-2 <= self._interval: + return False, None + x, y = x.to(self._meta_timestamps.device), y.to(self._meta_timestamps.device) + with torch.set_grad_enabled(True): + new_param = self.create_meta_embed() + + optimizer = torch.optim.Adam( + [new_param], lr=lr, weight_decay=1e-5, amsgrad=True + ) + timestamp = torch.Tensor([timestamp]).to(new_param.device) + self.replace_append_learnt(timestamp, new_param) + self.train() + base_model.train() + if init_info is not None: + best_loss = init_info["loss"] + new_param.data.copy_(init_info["param"].data) + else: + best_loss = 1e9 + with torch.no_grad(): + best_new_param = new_param.detach().clone() + for iepoch in range(epochs): + optimizer.zero_grad() + time_embed = self.gen_time_embed(timestamp.view(1)) + match_loss = criterion(new_param, time_embed) + + [container] = self.gen_model(new_param.view(1, -1)) + y_hat = base_model.forward_with_container(x, container) + meta_loss = criterion(y_hat, y) + loss = meta_loss + match_loss + loss.backward() + optimizer.step() + if meta_loss.item() < best_loss: + with torch.no_grad(): + best_loss = meta_loss.item() + best_new_param = new_param.detach().clone() + self.easy_adapt(timestamp, best_new_param) + return True, best_loss + + def extra_repr(self) -> str: + return "(_super_layer_embed): {:}, (_super_meta_embed): {:}, (_meta_timestamps): {:}".format( + list(self._super_layer_embed.shape), + list(self._super_meta_embed.shape), + list(self._meta_timestamps.shape), + )