Finalize example vis codes
This commit is contained in:
		| @@ -1,7 +1,7 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 # | ||||
| ############################################################################ | ||||
| # CUDA_VISIBLE_DEVICES=0 python exps/LFNA/vis-synthetic.py                 # | ||||
| # python exps/LFNA/vis-synthetic.py                                        # | ||||
| ############################################################################ | ||||
| import os, sys, copy, random | ||||
| import torch | ||||
| @@ -83,7 +83,7 @@ def find_max(cur, others): | ||||
| def compare_cl(save_dir): | ||||
|     save_dir = Path(str(save_dir)) | ||||
|     save_dir.mkdir(parents=True, exist_ok=True) | ||||
|     dynamic_env, function = create_example_v1( | ||||
|     dynamic_env, cl_function = create_example_v1( | ||||
|         # timestamp_config=dict(num=200, min_timestamp=-1, max_timestamp=1.0), | ||||
|         timestamp_config=dict(num=200), | ||||
|         num_per_task=1000, | ||||
| @@ -91,7 +91,6 @@ def compare_cl(save_dir): | ||||
|  | ||||
|     models = dict() | ||||
|  | ||||
|     cl_function = copy.deepcopy(function) | ||||
|     cl_function.set_timestamp(0) | ||||
|     cl_xaxis_min = None | ||||
|     cl_xaxis_max = None | ||||
| @@ -99,23 +98,15 @@ def compare_cl(save_dir): | ||||
|     all_data = OrderedDict() | ||||
|  | ||||
|     for idx, (timestamp, dataset) in enumerate(tqdm(dynamic_env, ncols=50)): | ||||
|         xaxis_all = dataset[:, 0].numpy() | ||||
|         xaxis_all = dataset[0][:, 0].numpy() | ||||
|         yaxis_all = dataset[1][:, 0].numpy() | ||||
|         current_data = dict() | ||||
|  | ||||
|         function.set_timestamp(timestamp) | ||||
|         yaxis_all = function.noise_call(xaxis_all) | ||||
|         current_data["lfna_xaxis_all"] = xaxis_all | ||||
|         current_data["lfna_yaxis_all"] = yaxis_all | ||||
|  | ||||
|         # compute cl-min | ||||
|         cl_xaxis_min = find_min(cl_xaxis_min, xaxis_all.mean() - xaxis_all.std()) | ||||
|         cl_xaxis_max = find_max(cl_xaxis_max, xaxis_all.mean() + xaxis_all.std()) | ||||
|         """ | ||||
|         cl_xaxis_all = np.arange(cl_xaxis_min, cl_xaxis_max, step=0.05) | ||||
|         cl_yaxis_all = cl_function.noise_call(cl_xaxis_all) | ||||
|         current_data["cl_xaxis_all"] = cl_xaxis_all | ||||
|         current_data["cl_yaxis_all"] = cl_yaxis_all | ||||
|         """ | ||||
|         all_data[timestamp] = current_data | ||||
|  | ||||
|     global_cl_xaxis_all = np.arange(cl_xaxis_min, cl_xaxis_max, step=0.1) | ||||
| @@ -170,10 +161,12 @@ def compare_cl(save_dir): | ||||
|             xdir=save_dir | ||||
|         ) | ||||
|     ) | ||||
|     video_cmd = "{:} -pix_fmt yuv420p {xdir}/compare-cl.mp4".format(base_cmd, xdir=save_dir) | ||||
|     video_cmd = "{:} -pix_fmt yuv420p {xdir}/compare-cl.mp4".format( | ||||
|         base_cmd, xdir=save_dir | ||||
|     ) | ||||
|     print(video_cmd + "\n") | ||||
|     os.system(video_cmd) | ||||
|     # os.system("{:} {xdir}/vis.webm".format(base_cmd, xdir=save_dir)) | ||||
|     os.system("{:} -pix_fmt yuv420p {xdir}/vis.webm".format(base_cmd, xdir=save_dir)) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|   | ||||
| @@ -5,7 +5,8 @@ from .get_dataset_with_transform import get_datasets, get_nas_search_loaders | ||||
| from .SearchDatasetWrap import SearchDataset | ||||
|  | ||||
| from .math_base_funcs import QuadraticFunc, CubicFunc, QuarticFunc | ||||
| from .math_adv_funcs import DynamicQuadraticFunc, ConstantFunc | ||||
| from .math_dynamic_funcs import DynamicQuadraticFunc | ||||
| from .math_adv_funcs import ConstantFunc | ||||
| from .math_adv_funcs import ComposedSinFunc | ||||
|  | ||||
| from .synthetic_utils import TimeStamp | ||||
|   | ||||
| @@ -14,41 +14,6 @@ from .math_base_funcs import QuadraticFunc | ||||
| from .math_base_funcs import QuarticFunc | ||||
|  | ||||
|  | ||||
| class DynamicQuadraticFunc(FitFunc): | ||||
|     """The dynamic quadratic function that outputs f(x) = a * x^2 + b * x + c. | ||||
|     The a, b, and c is a function of timestamp. | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, list_of_points=None): | ||||
|         super(DynamicQuadraticFunc, self).__init__(3, list_of_points) | ||||
|         self._timestamp = None | ||||
|  | ||||
|     def __call__(self, x, timestamp=None): | ||||
|         self.check_valid() | ||||
|         if timestamp is None: | ||||
|             timestamp = self._timestamp | ||||
|         a = self._params[0](timestamp) | ||||
|         b = self._params[1](timestamp) | ||||
|         c = self._params[2](timestamp) | ||||
|         convert_fn = lambda x: x[-1] if isinstance(x, (tuple, list)) else x | ||||
|         a, b, c = convert_fn(a), convert_fn(b), convert_fn(c) | ||||
|         return a * x * x + b * x + c | ||||
|  | ||||
|     def _getitem(self, x, weights): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def set_timestamp(self, timestamp): | ||||
|         self._timestamp = timestamp | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}({a} * x^2 + {b} * x + {c})".format( | ||||
|             name=self.__class__.__name__, | ||||
|             a=self._params[0], | ||||
|             b=self._params[1], | ||||
|             c=self._params[2], | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class ConstantFunc(FitFunc): | ||||
|     """The constant function: f(x) = c.""" | ||||
|  | ||||
|   | ||||
| @@ -13,20 +13,20 @@ import torch.utils.data as data | ||||
| class FitFunc(abc.ABC): | ||||
|     """The fit function that outputs f(x) = a * x^2 + b * x + c.""" | ||||
|  | ||||
|     def __init__(self, freedom: int, list_of_points=None, _params=None): | ||||
|     def __init__(self, freedom: int, list_of_points=None, params=None): | ||||
|         self._params = dict() | ||||
|         for i in range(freedom): | ||||
|             self._params[i] = None | ||||
|         self._freedom = freedom | ||||
|         if list_of_points is not None and _params is not None: | ||||
|             raise ValueError("list_of_points and _params can not be set simultaneously") | ||||
|         if list_of_points is not None and params is not None: | ||||
|             raise ValueError("list_of_points and params can not be set simultaneously") | ||||
|         if list_of_points is not None: | ||||
|             self.fit(list_of_points=list_of_points) | ||||
|         if _params is not None: | ||||
|             self.set(_params) | ||||
|         if params is not None: | ||||
|             self.set(params) | ||||
|  | ||||
|     def set(self, _params): | ||||
|         self._params = copy.deepcopy(_params) | ||||
|     def set(self, params): | ||||
|         self._params = copy.deepcopy(params) | ||||
|  | ||||
|     def check_valid(self): | ||||
|         for key, value in self._params.items(): | ||||
|   | ||||
							
								
								
									
										66
									
								
								lib/datasets/math_dynamic_funcs.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										66
									
								
								lib/datasets/math_dynamic_funcs.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,66 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| import math | ||||
| import abc | ||||
| import copy | ||||
| import numpy as np | ||||
| from typing import Optional | ||||
| import torch | ||||
| import torch.utils.data as data | ||||
|  | ||||
| from .math_base_funcs import FitFunc | ||||
|  | ||||
|  | ||||
| class DynamicFunc(FitFunc): | ||||
|     """The dynamic quadratic function, where each param is a function.""" | ||||
|  | ||||
|     def __init__(self, freedom: int, params=None): | ||||
|         super(DynamicFunc, self).__init__(freedom, None, params) | ||||
|         self._timestamp = None | ||||
|  | ||||
|     def __call__(self, x, timestamp=None): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def _getitem(self, x, weights): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def set_timestamp(self, timestamp): | ||||
|         self._timestamp = timestamp | ||||
|  | ||||
|     def noise_call(self, x, timestamp=None, std=0.1): | ||||
|         clean_y = self.__call__(x, timestamp) | ||||
|         if isinstance(clean_y, np.ndarray): | ||||
|             noise_y = clean_y + np.random.normal(scale=std, size=clean_y.shape) | ||||
|         else: | ||||
|             raise ValueError("Unkonwn type: {:}".format(type(clean_y))) | ||||
|         return noise_y | ||||
|  | ||||
|  | ||||
| class DynamicQuadraticFunc(DynamicFunc): | ||||
|     """The dynamic quadratic function that outputs f(x) = a * x^2 + b * x + c. | ||||
|     The a, b, and c is a function of timestamp. | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, params=None): | ||||
|         super(DynamicQuadraticFunc, self).__init__(3, params) | ||||
|  | ||||
|     def __call__(self, x, timestamp=None): | ||||
|         self.check_valid() | ||||
|         if timestamp is None: | ||||
|             timestamp = self._timestamp | ||||
|         a = self._params[0](timestamp) | ||||
|         b = self._params[1](timestamp) | ||||
|         c = self._params[2](timestamp) | ||||
|         convert_fn = lambda x: x[-1] if isinstance(x, (tuple, list)) else x | ||||
|         a, b, c = convert_fn(a), convert_fn(b), convert_fn(c) | ||||
|         return a * x * x + b * x + c | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}({a} * x^2 + {b} * x + {c}, timestamp={timestamp})".format( | ||||
|             name=self.__class__.__name__, | ||||
|             a=self._params[0], | ||||
|             b=self._params[1], | ||||
|             c=self._params[2], | ||||
|             timestamp=self._timestamp, | ||||
|         ) | ||||
| @@ -41,6 +41,11 @@ class SyntheticDEnv(data.Dataset): | ||||
|         self._mean_functors = mean_functors | ||||
|         self._cov_functors = cov_functors | ||||
|  | ||||
|         self._oracle_map = None | ||||
|  | ||||
|     def set_oracle_map(self, functor): | ||||
|         self._oracle_map = functor | ||||
|  | ||||
|     def __iter__(self): | ||||
|         self._iter_num = 0 | ||||
|         return self | ||||
| @@ -63,7 +68,11 @@ class SyntheticDEnv(data.Dataset): | ||||
|         dataset = np.random.multivariate_normal( | ||||
|             mean_list, cov_matrix, size=self._num_per_task | ||||
|         ) | ||||
|         if self._oracle_map is None: | ||||
|             return timestamp, torch.Tensor(dataset) | ||||
|         else: | ||||
|             targets = self._oracle_map.noise_call(dataset, timestamp) | ||||
|             return timestamp, (torch.Tensor(dataset), torch.Tensor(targets)) | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self._timestamp_generator) | ||||
|   | ||||
| @@ -1,8 +1,9 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| import copy | ||||
|  | ||||
| from .math_adv_funcs import DynamicQuadraticFunc | ||||
| from .math_dynamic_funcs import DynamicQuadraticFunc | ||||
| from .math_adv_funcs import ConstantFunc, ComposedSinFunc | ||||
| from .synthetic_env import SyntheticDEnv | ||||
|  | ||||
| @@ -11,7 +12,6 @@ def create_example_v1( | ||||
|     timestamp_config=None, | ||||
|     num_per_task=5000, | ||||
| ): | ||||
|     # timestamp_config=dict(num=100, min_timestamp=0.0, max_timestamp=1.0), | ||||
|     mean_generator = ComposedSinFunc() | ||||
|     std_generator = ComposedSinFunc(min_amplitude=0.5, max_amplitude=0.5) | ||||
|  | ||||
| @@ -32,4 +32,6 @@ def create_example_v1( | ||||
|         num_sin_phase=5, phase_shift=0.4, max_amplitude=0.9 | ||||
|     ) | ||||
|     function.set(function_param) | ||||
|  | ||||
|     dynamic_env.set_oracle_map(copy.deepcopy(function)) | ||||
|     return dynamic_env, function | ||||
|   | ||||
| @@ -6,3 +6,4 @@ black ./lib/datasets | ||||
| black ./lib/xlayers | ||||
| black ./exps/LFNA | ||||
| black ./exps/trading | ||||
| black ./lib/procedures | ||||
|   | ||||
		Reference in New Issue
	
	Block a user