Rerange experimental
This commit is contained in:
		
							
								
								
									
										5
									
								
								xautodl/xmodels/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								xautodl/xmodels/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,5 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.06 # | ||||
| ##################################################### | ||||
| # The models in this folder is written with xlayers # | ||||
| ##################################################### | ||||
							
								
								
									
										197
									
								
								xautodl/xmodels/transformers.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										197
									
								
								xautodl/xmodels/transformers.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,197 @@ | ||||
| opyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| from __future__ import division | ||||
| from __future__ import print_function | ||||
|  | ||||
| import math | ||||
| from functools import partial | ||||
| from typing import Optional, Text, List | ||||
|  | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| from xautodl import spaces | ||||
| from xautodl.xlayers import trunc_normal_ | ||||
| from xautodl.xlayers import super_core | ||||
|  | ||||
|  | ||||
| __all__ = ["DefaultSearchSpace", "DEFAULT_NET_CONFIG", "get_transformer"] | ||||
|  | ||||
|  | ||||
| def _get_mul_specs(candidates, num): | ||||
|     results = [] | ||||
|     for i in range(num): | ||||
|         results.append(spaces.Categorical(*candidates)) | ||||
|     return results | ||||
|  | ||||
|  | ||||
| def _get_list_mul(num, multipler): | ||||
|     results = [] | ||||
|     for i in range(1, num + 1): | ||||
|         results.append(i * multipler) | ||||
|     return results | ||||
|  | ||||
|  | ||||
| def _assert_types(x, expected_types): | ||||
|     if not isinstance(x, expected_types): | ||||
|         raise TypeError( | ||||
|             "The type [{:}] is expected to be {:}.".format(type(x), expected_types) | ||||
|         ) | ||||
|  | ||||
|  | ||||
| DEFAULT_NET_CONFIG = None | ||||
| _default_max_depth = 5 | ||||
| DefaultSearchSpace = dict( | ||||
|     d_feat=6, | ||||
|     embed_dim=spaces.Categorical(*_get_list_mul(8, 16)), | ||||
|     num_heads=_get_mul_specs((1, 2, 4, 8), _default_max_depth), | ||||
|     mlp_hidden_multipliers=_get_mul_specs((0.5, 1, 2, 4, 8), _default_max_depth), | ||||
|     qkv_bias=True, | ||||
|     pos_drop=0.0, | ||||
|     other_drop=0.0, | ||||
| ) | ||||
|  | ||||
|  | ||||
| class SuperTransformer(super_core.SuperModule): | ||||
|     """The super model for transformer.""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         d_feat: int = 6, | ||||
|         embed_dim: List[super_core.IntSpaceType] = DefaultSearchSpace["embed_dim"], | ||||
|         num_heads: List[super_core.IntSpaceType] = DefaultSearchSpace["num_heads"], | ||||
|         mlp_hidden_multipliers: List[super_core.IntSpaceType] = DefaultSearchSpace[ | ||||
|             "mlp_hidden_multipliers" | ||||
|         ], | ||||
|         qkv_bias: bool = DefaultSearchSpace["qkv_bias"], | ||||
|         pos_drop: float = DefaultSearchSpace["pos_drop"], | ||||
|         other_drop: float = DefaultSearchSpace["other_drop"], | ||||
|         max_seq_len: int = 65, | ||||
|     ): | ||||
|         super(SuperTransformer, self).__init__() | ||||
|         self._embed_dim = embed_dim | ||||
|         self._num_heads = num_heads | ||||
|         self._mlp_hidden_multipliers = mlp_hidden_multipliers | ||||
|  | ||||
|         # the stem part | ||||
|         self.input_embed = super_core.SuperAlphaEBDv1(d_feat, embed_dim) | ||||
|         self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) | ||||
|         self.pos_embed = super_core.SuperPositionalEncoder( | ||||
|             d_model=embed_dim, max_seq_len=max_seq_len, dropout=pos_drop | ||||
|         ) | ||||
|         # build the transformer encode layers -->> check params | ||||
|         _assert_types(num_heads, (tuple, list)) | ||||
|         _assert_types(mlp_hidden_multipliers, (tuple, list)) | ||||
|         assert len(num_heads) == len(mlp_hidden_multipliers), "{:} vs {:}".format( | ||||
|             len(num_heads), len(mlp_hidden_multipliers) | ||||
|         ) | ||||
|         # build the transformer encode layers -->> backbone | ||||
|         layers = [] | ||||
|         for num_head, mlp_hidden_multiplier in zip(num_heads, mlp_hidden_multipliers): | ||||
|             layer = super_core.SuperTransformerEncoderLayer( | ||||
|                 embed_dim, | ||||
|                 num_head, | ||||
|                 qkv_bias, | ||||
|                 mlp_hidden_multiplier, | ||||
|                 other_drop, | ||||
|             ) | ||||
|             layers.append(layer) | ||||
|         self.backbone = super_core.SuperSequential(*layers) | ||||
|  | ||||
|         # the regression head | ||||
|         self.head = super_core.SuperSequential( | ||||
|             super_core.SuperLayerNorm1D(embed_dim), super_core.SuperLinear(embed_dim, 1) | ||||
|         ) | ||||
|         trunc_normal_(self.cls_token, std=0.02) | ||||
|         self.apply(self._init_weights) | ||||
|  | ||||
|     @property | ||||
|     def embed_dim(self): | ||||
|         return spaces.get_max(self._embed_dim) | ||||
|  | ||||
|     @property | ||||
|     def abstract_search_space(self): | ||||
|         root_node = spaces.VirtualNode(id(self)) | ||||
|         if not spaces.is_determined(self._embed_dim): | ||||
|             root_node.append("_embed_dim", self._embed_dim.abstract(reuse_last=True)) | ||||
|         xdict = dict( | ||||
|             input_embed=self.input_embed.abstract_search_space, | ||||
|             pos_embed=self.pos_embed.abstract_search_space, | ||||
|             backbone=self.backbone.abstract_search_space, | ||||
|             head=self.head.abstract_search_space, | ||||
|         ) | ||||
|         for key, space in xdict.items(): | ||||
|             if not spaces.is_determined(space): | ||||
|                 root_node.append(key, space) | ||||
|         return root_node | ||||
|  | ||||
|     def apply_candidate(self, abstract_child: spaces.VirtualNode): | ||||
|         super(SuperTransformer, self).apply_candidate(abstract_child) | ||||
|         xkeys = ("input_embed", "pos_embed", "backbone", "head") | ||||
|         for key in xkeys: | ||||
|             if key in abstract_child: | ||||
|                 getattr(self, key).apply_candidate(abstract_child[key]) | ||||
|  | ||||
|     def _init_weights(self, m): | ||||
|         if isinstance(m, nn.Linear): | ||||
|             trunc_normal_(m.weight, std=0.02) | ||||
|             if isinstance(m, nn.Linear) and m.bias is not None: | ||||
|                 nn.init.constant_(m.bias, 0) | ||||
|         elif isinstance(m, super_core.SuperLinear): | ||||
|             trunc_normal_(m._super_weight, std=0.02) | ||||
|             if m._super_bias is not None: | ||||
|                 nn.init.constant_(m._super_bias, 0) | ||||
|         elif isinstance(m, super_core.SuperLayerNorm1D): | ||||
|             nn.init.constant_(m.weight, 1.0) | ||||
|             nn.init.constant_(m.bias, 0) | ||||
|  | ||||
|     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         batch, flatten_size = input.shape | ||||
|         feats = self.input_embed(input)  # batch * 60 * 64 | ||||
|         if not spaces.is_determined(self._embed_dim): | ||||
|             embed_dim = self.abstract_child["_embed_dim"].value | ||||
|         else: | ||||
|             embed_dim = spaces.get_determined_value(self._embed_dim) | ||||
|         cls_tokens = self.cls_token.expand(batch, -1, -1) | ||||
|         cls_tokens = F.interpolate( | ||||
|             cls_tokens, size=(embed_dim), mode="linear", align_corners=True | ||||
|         ) | ||||
|         feats_w_ct = torch.cat((cls_tokens, feats), dim=1) | ||||
|         feats_w_tp = self.pos_embed(feats_w_ct) | ||||
|         xfeats = self.backbone(feats_w_tp) | ||||
|         xfeats = xfeats[:, 0, :]  # use the feature for the first token | ||||
|         predicts = self.head(xfeats).squeeze(-1) | ||||
|         return predicts | ||||
|  | ||||
|     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         batch, flatten_size = input.shape | ||||
|         feats = self.input_embed(input)  # batch * 60 * 64 | ||||
|         cls_tokens = self.cls_token.expand(batch, -1, -1) | ||||
|         feats_w_ct = torch.cat((cls_tokens, feats), dim=1) | ||||
|         feats_w_tp = self.pos_embed(feats_w_ct) | ||||
|         xfeats = self.backbone(feats_w_tp) | ||||
|         xfeats = xfeats[:, 0, :]  # use the feature for the first token | ||||
|         predicts = self.head(xfeats).squeeze(-1) | ||||
|         return predicts | ||||
|  | ||||
|  | ||||
| def get_transformer(config): | ||||
|     if config is None: | ||||
|         return SuperTransformer(6) | ||||
|     if not isinstance(config, dict): | ||||
|         raise ValueError("Invalid Configuration: {:}".format(config)) | ||||
|     name = config.get("name", "basic") | ||||
|     if name == "basic": | ||||
|         model = SuperTransformer( | ||||
|             d_feat=config.get("d_feat"), | ||||
|             embed_dim=config.get("embed_dim"), | ||||
|             num_heads=config.get("num_heads"), | ||||
|             mlp_hidden_multipliers=config.get("mlp_hidden_multipliers"), | ||||
|             qkv_bias=config.get("qkv_bias"), | ||||
|             pos_drop=config.get("pos_drop"), | ||||
|             other_drop=config.get("other_drop"), | ||||
|         ) | ||||
|     else: | ||||
|         raise ValueError("Unknown model name: {:}".format(name)) | ||||
|     return model | ||||
		Reference in New Issue
	
	Block a user