From 6effb6f127d9dfd6f7d3f0766c7cbf65ae246393 Mon Sep 17 00:00:00 2001
From: D-X-Y <280835372@qq.com>
Date: Tue, 30 Jun 2020 09:05:38 +0000
Subject: [PATCH] Upgrade NAS-API to v2.0: we use an abstract class
NASBenchMetaAPI to define the spec of an API; it can be inherited to support
different kinds of NAS API, while keep the query interface the same.
---
README.md | 2 +-
README_CN.md | 2 +-
configs/nas-benchmark/hyper-opts/200E.config | 13 +
docs/NAS-Bench-201.md | 16 +-
.../{NIPS-2019-TAS.md => NeurIPS-2019-TAS.md} | 0
exps/NAS-Bench-201/dist-setup.py | 3 +-
exps/NAS-Bench-201/statistics-v2.py | 3 +-
exps/NAS-Bench-201/test-nas-api-vis.py | 93 ++
exps/NAS-Bench-201/test-nas-api.py | 283 ++++++
exps/NAS-Bench-201/test-weights.py | 1 -
exps/NAS-Bench-201/xshape-collect.py | 242 +++++
exps/NAS-Bench-201/xshape-file.py | 4 +-
exps/algos/BOHB.py | 4 +-
exps/algos/R_EA.py | 10 +-
exps/experimental/test-api.py | 20 +
lib/models/cell_searchs/genotypes.py | 1 +
lib/nas_201_api/__init__.py | 8 +-
lib/nas_201_api/api.py | 916 ------------------
lib/nas_201_api/api_201.py | 269 +++++
lib/nas_201_api/api_301.py | 215 ++++
lib/nas_201_api/api_utils.py | 711 ++++++++++++++
scripts-search/X-X/train-shapes-v2.sh | 7 +-
scripts-search/X-X/train-shapes.sh | 9 +-
23 files changed, 1888 insertions(+), 944 deletions(-)
create mode 100644 configs/nas-benchmark/hyper-opts/200E.config
rename docs/{NIPS-2019-TAS.md => NeurIPS-2019-TAS.md} (100%)
create mode 100644 exps/NAS-Bench-201/test-nas-api-vis.py
create mode 100644 exps/NAS-Bench-201/test-nas-api.py
create mode 100644 exps/NAS-Bench-201/xshape-collect.py
create mode 100644 exps/experimental/test-api.py
delete mode 100644 lib/nas_201_api/api.py
create mode 100644 lib/nas_201_api/api_201.py
create mode 100644 lib/nas_201_api/api_301.py
create mode 100644 lib/nas_201_api/api_utils.py
diff --git a/README.md b/README.md
index 25c922c..f3acda1 100644
--- a/README.md
+++ b/README.md
@@ -37,7 +37,7 @@ At the moment, this project provides the following algorithms and scripts to run
NAS |
TAS |
Network Pruning via Transformable Architecture Search |
- NIPS-2019-TAS.md |
+ NeurIPS-2019-TAS.md |
DARTS |
diff --git a/README_CN.md b/README_CN.md
index c01e1ba..2b6aedf 100644
--- a/README_CN.md
+++ b/README_CN.md
@@ -37,7 +37,7 @@
NAS |
TAS |
Network Pruning via Transformable Architecture Search |
- NIPS-2019-TAS.md |
+ NeurIPS-2019-TAS.md |
DARTS |
diff --git a/configs/nas-benchmark/hyper-opts/200E.config b/configs/nas-benchmark/hyper-opts/200E.config
new file mode 100644
index 0000000..b681784
--- /dev/null
+++ b/configs/nas-benchmark/hyper-opts/200E.config
@@ -0,0 +1,13 @@
+{
+ "scheduler": ["str", "cos"],
+ "eta_min" : ["float", "0.0"],
+ "epochs" : ["int", "200"],
+ "warmup" : ["int", "0"],
+ "optim" : ["str", "SGD"],
+ "LR" : ["float", "0.1"],
+ "decay" : ["float", "0.0005"],
+ "momentum" : ["float", "0.9"],
+ "nesterov" : ["bool", "1"],
+ "criterion": ["str", "Softmax"],
+ "batch_size": ["int", "256"]
+}
diff --git a/docs/NAS-Bench-201.md b/docs/NAS-Bench-201.md
index 1db0d78..61e00a1 100644
--- a/docs/NAS-Bench-201.md
+++ b/docs/NAS-Bench-201.md
@@ -29,7 +29,10 @@ NAS-BENCH-201-4-v1.0-archive.tar](https://drive.google.com/open?id=1X2i-JXaElsnV
- [2020.02.25] APIv1.0/FILEv1.0: Checkpoints for 3 runs of each baseline NAS algorithm are provided in [Google Drive](https://drive.google.com/open?id=1eAgLZQAViP3r6dA0_ZOOGG9zPLXhGwXi).
- [2020.03.09] APIv1.2/FILEv1.0: More robust API with more functions and descriptions
- [2020.03.16] APIv1.3/FILEv1.1: [`NAS-Bench-201-v1_1-096897.pth`](https://drive.google.com/open?id=16Y0UwGisiouVRxW-W5hEtbxmcHw_0hF_) (4.7G), where `096897` is the last six digits for this file. It contains information of more trials compared to `NAS-Bench-201-v1_0-e61699.pth`, especially all models trained by 12 epochs on all datasets are avaliable.
-- [2020.06.01] APIv2.0/FILEv2.0: coming soon!
+- [2020.06.30] APIv2.0: Use abstract class (NASBenchMetaAPI) for APIs of NAS-Bench-x0y.
+- [2020.06.30] FILEv2.0: coming soon!
+
+**We recommend to use `NAS-Bench-201-v1_1-096897.pth`**
The training and evaluation data used in NAS-Bench-201 can be downloaded from [Google Drive](https://drive.google.com/open?id=1L0Lzq8rWpZLPfiQGd6QR8q5xLV88emU7) or [Baidu-Wangpan (code:4fg7)](https://pan.baidu.com/s/1XAzavPKq3zcat1yBA1L2tQ).
@@ -42,7 +45,8 @@ It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default).
from nas_201_api import NASBench201API as API
api = API('$path_to_meta_nas_bench_file')
api = API('NAS-Bench-201-v1_1-096897.pth')
-api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_1-096897.pth'))
+# The default path for benchmark file is '{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_1-096897.pth')
+api = API(None)
```
2. Show the number of architectures `len(api)` and each architecture `api[i]`:
@@ -149,10 +153,12 @@ api.reload('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-BENCH-201-4-v1.0-arch
weights = api.get_net_param(3, 'cifar10', None) # Obtaining the weights of all trials for the 3-th architecture on cifar10. It will returns a dict, where the key is the seed and the value is the trained weights.
```
-To obtain the training and evaluation information (please see the comments [here](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_201_api/api.py#L172)):
+To obtain the training and evaluation information (please see the comments [here](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_201_api/api_201.py#L142)):
```
-api.get_more_info(112, 'cifar10', None, False, True)
-api.get_more_info(112, 'ImageNet16-120', None, False, True) # the info of last training epoch for 112-th architecture (use 200-epoch-hyper-parameter and randomly select a trial)
+api.get_more_info(112, 'cifar10', None, hp='200', is_random=True)
+# Query info of last training epoch for 112-th architecture
+# using 200-epoch-hyper-parameter and randomly select a trial.
+api.get_more_info(112, 'ImageNet16-120', None, hp='200', is_random=True)
```
Please use the following script to show the best architectures on each dataset:
diff --git a/docs/NIPS-2019-TAS.md b/docs/NeurIPS-2019-TAS.md
similarity index 100%
rename from docs/NIPS-2019-TAS.md
rename to docs/NeurIPS-2019-TAS.md
diff --git a/exps/NAS-Bench-201/dist-setup.py b/exps/NAS-Bench-201/dist-setup.py
index 8ea4782..a271ae8 100644
--- a/exps/NAS-Bench-201/dist-setup.py
+++ b/exps/NAS-Bench-201/dist-setup.py
@@ -4,6 +4,7 @@
# [2020.02.25] Initialize the API as v1.1
# [2020.03.09] Upgrade the API to v1.2
# [2020.03.16] Upgrade the API to v1.3
+# [2020.06.30] Upgrade the API to v2.0
import os
from setuptools import setup
@@ -15,7 +16,7 @@ def read(fname='README.md'):
setup(
name = "nas_bench_201",
- version = "1.3",
+ version = "2.0",
author = "Xuanyi Dong",
author_email = "dongxuanyi888@gmail.com",
description = "API for NAS-Bench-201 (a benchmark for neural architecture search).",
diff --git a/exps/NAS-Bench-201/statistics-v2.py b/exps/NAS-Bench-201/statistics-v2.py
index 920b9bd..a01177e 100644
--- a/exps/NAS-Bench-201/statistics-v2.py
+++ b/exps/NAS-Bench-201/statistics-v2.py
@@ -22,7 +22,7 @@ def create_result_count(used_seed: int, dataset: Text, arch_config: Dict[Text, A
results: Dict[Text, Any], dataloader_dict: Dict[Text, Any]) -> ResultsCount:
xresult = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'],
results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None)
- net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes':arch_config['class_num']}, None)
+ net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes': arch_config['class_num']}, None)
network = get_cell_based_tiny_net(net_config)
network.load_state_dict(xresult.get_net_param())
if 'train_times' in results: # new version
@@ -126,7 +126,6 @@ def correct_time_related_info(arch_index: int, arch_info_full: ArchResults, arch
arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'ori-test', eval_per_sample * nums['ImageNet16-120-test'])
# arch_info_full.debug_test()
# arch_info_less.debug_test()
- # import pdb; pdb.set_trace()
return arch_info_full, arch_info_less
diff --git a/exps/NAS-Bench-201/test-nas-api-vis.py b/exps/NAS-Bench-201/test-nas-api-vis.py
new file mode 100644
index 0000000..34bd18b
--- /dev/null
+++ b/exps/NAS-Bench-201/test-nas-api-vis.py
@@ -0,0 +1,93 @@
+###############################################################
+# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
+###############################################################
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
+###############################################################
+# Usage: python exps/NAS-Bench-201/test-nas-api-vis.py
+###############################################################
+import os, sys, time, torch, argparse
+import numpy as np
+from typing import List, Text, Dict, Any
+from shutil import copyfile
+from collections import defaultdict
+from copy import deepcopy
+from pathlib import Path
+import matplotlib
+import seaborn as sns
+matplotlib.use('agg')
+import matplotlib.pyplot as plt
+import matplotlib.ticker as ticker
+
+lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
+if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
+from config_utils import dict2config, load_config
+from nas_201_api import NASBench201API, NASBench301API
+from log_utils import time_string
+from models import get_cell_based_tiny_net
+
+
+def visualize_info(api, vis_save_dir, indicator):
+ vis_save_dir = vis_save_dir.resolve()
+ # print ('{:} start to visualize {:} information'.format(time_string(), api))
+ vis_save_dir.mkdir(parents=True, exist_ok=True)
+
+ cifar010_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar10', indicator)
+ cifar100_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar100', indicator)
+ imagenet_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('ImageNet16-120', indicator)
+ cifar010_info = torch.load(cifar010_cache_path)
+ cifar100_info = torch.load(cifar100_cache_path)
+ imagenet_info = torch.load(imagenet_cache_path)
+ indexes = list(range(len(cifar010_info['params'])))
+
+ print ('{:} start to visualize relative ranking'.format(time_string()))
+
+ cifar010_ord_indexes = sorted(indexes, key=lambda i: cifar010_info['test_accs'][i])
+ cifar100_ord_indexes = sorted(indexes, key=lambda i: cifar100_info['test_accs'][i])
+ imagenet_ord_indexes = sorted(indexes, key=lambda i: imagenet_info['test_accs'][i])
+
+ cifar100_labels, imagenet_labels = [], []
+ for idx in cifar010_ord_indexes:
+ cifar100_labels.append( cifar100_ord_indexes.index(idx) )
+ imagenet_labels.append( imagenet_ord_indexes.index(idx) )
+ print ('{:} prepare data done.'.format(time_string()))
+
+ dpi, width, height = 200, 1400, 800
+ figsize = width / float(dpi), height / float(dpi)
+ LabelSize, LegendFontsize = 18, 12
+ resnet_scale, resnet_alpha = 120, 0.5
+
+ fig = plt.figure(figsize=figsize)
+ ax = fig.add_subplot(111)
+ plt.xlim(min(indexes), max(indexes))
+ plt.ylim(min(indexes), max(indexes))
+ # plt.ylabel('y').set_rotation(30)
+ plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//3), fontsize=LegendFontsize, rotation='vertical')
+ plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//5), fontsize=LegendFontsize)
+ ax.scatter(indexes, cifar100_labels, marker='^', s=0.5, c='tab:green', alpha=0.8)
+ ax.scatter(indexes, imagenet_labels, marker='*', s=0.5, c='tab:red' , alpha=0.8)
+ ax.scatter(indexes, indexes , marker='o', s=0.5, c='tab:blue' , alpha=0.8)
+ ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='CIFAR-10')
+ ax.scatter([-1], [-1], marker='^', s=100, c='tab:green', label='CIFAR-100')
+ ax.scatter([-1], [-1], marker='*', s=100, c='tab:red' , label='ImageNet-16-120')
+ plt.grid(zorder=0)
+ ax.set_axisbelow(True)
+ plt.legend(loc=0, fontsize=LegendFontsize)
+ ax.set_xlabel('architecture ranking in CIFAR-10', fontsize=LabelSize)
+ ax.set_ylabel('architecture ranking', fontsize=LabelSize)
+ save_path = (vis_save_dir / '{:}-relative-rank.pdf'.format(indicator)).resolve()
+ fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf')
+ save_path = (vis_save_dir / '{:}-relative-rank.png'.format(indicator)).resolve()
+ fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
+ print ('{:} save into {:}'.format(time_string(), save_path))
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+ parser.add_argument('--save_dir', type=str, default='output/NAS-BENCH-202', help='Folder to save checkpoints and log.')
+ parser.add_argument('--check_N', type=int, default=32768, help='For safety.')
+ # use for train the model
+ args = parser.parse_args()
+
+ visualize_info(None, Path('output/vis-nas-bench/'), 'tss')
+
+ visualize_info(None, Path('output/vis-nas-bench/'), 'sss')
diff --git a/exps/NAS-Bench-201/test-nas-api.py b/exps/NAS-Bench-201/test-nas-api.py
new file mode 100644
index 0000000..1e9ff42
--- /dev/null
+++ b/exps/NAS-Bench-201/test-nas-api.py
@@ -0,0 +1,283 @@
+###############################################################
+# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
+###############################################################
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
+###############################################################
+# Usage: python exps/NAS-Bench-201/test-nas-api.py
+###############################################################
+import os, sys, time, torch, argparse
+import numpy as np
+from typing import List, Text, Dict, Any
+from shutil import copyfile
+from collections import defaultdict
+from copy import deepcopy
+from pathlib import Path
+import matplotlib
+import seaborn as sns
+matplotlib.use('agg')
+import matplotlib.pyplot as plt
+import matplotlib.ticker as ticker
+
+lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
+if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
+from config_utils import dict2config, load_config
+from nas_201_api import NASBench201API, NASBench301API
+from log_utils import time_string
+from models import get_cell_based_tiny_net
+
+
+def test_api(api, is_301=True):
+ print('{:} start testing the api : {:}'.format(time_string(), api))
+ api.clear_params(12)
+ api.reload(index=12)
+
+ # Query the informations of 1113-th architecture
+ info_strs = api.query_info_str_by_arch(1113)
+ print(info_strs)
+ info = api.query_by_index(113)
+ print('{:}\n'.format(info))
+ info = api.query_by_index(113, 'cifar100')
+ print('{:}\n'.format(info))
+
+ info = api.query_meta_info_by_index(115, '90' if is_301 else '200')
+ print('{:}\n'.format(info))
+
+ for dataset in ['cifar10', 'cifar100', 'ImageNet16-120']:
+ for xset in ['train', 'test', 'valid']:
+ best_index, highest_accuracy = api.find_best(dataset, xset)
+ print('')
+ params = api.get_net_param(12, 'cifar10', None)
+
+ # obtain the config and create the network
+ config = api.get_net_config(12, 'cifar10')
+ print('{:}\n'.format(config))
+ network = get_cell_based_tiny_net(config)
+ network.load_state_dict(next(iter(params.values())))
+
+ # obtain the cost information
+ info = api.get_cost_info(12, 'cifar10')
+ print('{:}\n'.format(info))
+ info = api.get_latency(12, 'cifar10')
+ print('{:}\n'.format(info))
+
+ # count the number of architectures
+ info = api.statistics('cifar100', '12')
+ print('{:}\n'.format(info))
+
+ # show the information of the 123-th architecture
+ api.show(123)
+
+ # obtain both cost and performance information
+ info = api.get_more_info(1234, 'cifar10')
+ print('{:}\n'.format(info))
+ print('{:} finish testing the api : {:}'.format(time_string(), api))
+
+
+def visualize_sss_info(api, dataset, vis_save_dir):
+ vis_save_dir = vis_save_dir.resolve()
+ print ('{:} start to visualize {:} information'.format(time_string(), dataset))
+ vis_save_dir.mkdir(parents=True, exist_ok=True)
+ cache_file_path = vis_save_dir / '{:}-cache-sss-info.pth'.format(dataset)
+ if not cache_file_path.exists():
+ print ('Do not find cache file : {:}'.format(cache_file_path))
+ params, flops, train_accs, valid_accs, test_accs = [], [], [], [], []
+ for index in range(len(api)):
+ info = api.get_cost_info(index, dataset)
+ params.append(info['params'])
+ flops.append(info['flops'])
+ # accuracy
+ info = api.get_more_info(index, dataset, hp='90')
+ train_accs.append(info['train-accuracy'])
+ test_accs.append(info['test-accuracy'])
+ if dataset == 'cifar10':
+ info = api.get_more_info(index, 'cifar10-valid', hp='90')
+ valid_accs.append(info['valid-accuracy'])
+ else:
+ valid_accs.append(info['valid-accuracy'])
+ info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs}
+ torch.save(info, cache_file_path)
+ else:
+ print ('Find cache file : {:}'.format(cache_file_path))
+ info = torch.load(cache_file_path)
+ params, flops, train_accs, valid_accs, test_accs = info['params'], info['flops'], info['train_accs'], info['valid_accs'], info['test_accs']
+ print ('{:} collect data done.'.format(time_string()))
+
+ pyramid = ['8:16:32:48:64', '8:8:16:32:48', '8:8:16:16:32', '8:8:16:16:48', '8:8:16:16:64', '16:16:32:32:64', '32:32:64:64:64']
+ pyramid_indexes = [api.query_index_by_arch(x) for x in pyramid]
+ largest_indexes = [api.query_index_by_arch('64:64:64:64:64')]
+
+ indexes = list(range(len(params)))
+ dpi, width, height = 250, 8500, 1300
+ figsize = width / float(dpi), height / float(dpi)
+ LabelSize, LegendFontsize = 24, 24
+ # resnet_scale, resnet_alpha = 120, 0.5
+ xscale, xalpha = 120, 0.8
+
+ fig, axs = plt.subplots(1, 4, figsize=figsize)
+ # ax1, ax2, ax3, ax4, ax5 = axs
+ for ax in axs:
+ for tick in ax.xaxis.get_major_ticks():
+ tick.label.set_fontsize(LabelSize)
+ ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.0f'))
+ for tick in ax.yaxis.get_major_ticks():
+ tick.label.set_fontsize(LabelSize)
+ ax2, ax3, ax4, ax5 = axs
+ # ax1.xaxis.set_ticks(np.arange(0, max(indexes), max(indexes)//5))
+ # ax1.scatter(indexes, test_accs, marker='o', s=0.5, c='tab:blue')
+ # ax1.set_xlabel('architecture ID', fontsize=LabelSize)
+ # ax1.set_ylabel('test accuracy (%)', fontsize=LabelSize)
+
+ ax2.scatter(params, train_accs, marker='o', s=0.5, c='tab:blue')
+ ax2.scatter([params[x] for x in pyramid_indexes], [train_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha)
+ ax2.scatter([params[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
+ ax2.set_xlabel('#parameters (MB)', fontsize=LabelSize)
+ ax2.set_ylabel('train accuracy (%)', fontsize=LabelSize)
+ ax2.legend(loc=4, fontsize=LegendFontsize)
+
+ ax3.scatter(params, test_accs, marker='o', s=0.5, c='tab:blue')
+ ax3.scatter([params[x] for x in pyramid_indexes], [test_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha)
+ ax3.scatter([params[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
+ ax3.set_xlabel('#parameters (MB)', fontsize=LabelSize)
+ ax3.set_ylabel('test accuracy (%)', fontsize=LabelSize)
+ ax3.legend(loc=4, fontsize=LegendFontsize)
+
+ ax4.scatter(flops, train_accs, marker='o', s=0.5, c='tab:blue')
+ ax4.scatter([flops[x] for x in pyramid_indexes], [train_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha)
+ ax4.scatter([flops[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
+ ax4.set_xlabel('#FLOPs (M)', fontsize=LabelSize)
+ ax4.set_ylabel('train accuracy (%)', fontsize=LabelSize)
+ ax4.legend(loc=4, fontsize=LegendFontsize)
+
+ ax5.scatter(flops, test_accs, marker='o', s=0.5, c='tab:blue')
+ ax5.scatter([flops[x] for x in pyramid_indexes], [test_accs[x] for x in pyramid_indexes], marker='*', s=xscale, c='tab:orange', label='Pyramid Structure', alpha=xalpha)
+ ax5.scatter([flops[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
+ ax5.set_xlabel('#FLOPs (M)', fontsize=LabelSize)
+ ax5.set_ylabel('test accuracy (%)', fontsize=LabelSize)
+ ax5.legend(loc=4, fontsize=LegendFontsize)
+
+ save_path = vis_save_dir / 'sss-{:}.png'.format(dataset)
+ fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
+ print ('{:} save into {:}'.format(time_string(), save_path))
+ plt.close('all')
+
+
+def visualize_tss_info(api, dataset, vis_save_dir):
+ vis_save_dir = vis_save_dir.resolve()
+ print ('{:} start to visualize {:} information'.format(time_string(), dataset))
+ vis_save_dir.mkdir(parents=True, exist_ok=True)
+ cache_file_path = vis_save_dir / '{:}-cache-tss-info.pth'.format(dataset)
+ if not cache_file_path.exists():
+ print ('Do not find cache file : {:}'.format(cache_file_path))
+ params, flops, train_accs, valid_accs, test_accs = [], [], [], [], []
+ for index in range(len(api)):
+ info = api.get_cost_info(index, dataset)
+ params.append(info['params'])
+ flops.append(info['flops'])
+ # accuracy
+ info = api.get_more_info(index, dataset, hp='200')
+ train_accs.append(info['train-accuracy'])
+ test_accs.append(info['test-accuracy'])
+ if dataset == 'cifar10':
+ info = api.get_more_info(index, 'cifar10-valid', hp='200')
+ valid_accs.append(info['valid-accuracy'])
+ else:
+ valid_accs.append(info['valid-accuracy'])
+ info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs}
+ torch.save(info, cache_file_path)
+ else:
+ print ('Find cache file : {:}'.format(cache_file_path))
+ info = torch.load(cache_file_path)
+ params, flops, train_accs, valid_accs, test_accs = info['params'], info['flops'], info['train_accs'], info['valid_accs'], info['test_accs']
+ print ('{:} collect data done.'.format(time_string()))
+
+ resnet = ['|nor_conv_3x3~0|+|none~0|nor_conv_3x3~1|+|skip_connect~0|none~1|skip_connect~2|']
+ resnet_indexes = [api.query_index_by_arch(x) for x in resnet]
+ largest_indexes = [api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|nor_conv_3x3~0|nor_conv_3x3~1|nor_conv_3x3~2|')]
+
+ indexes = list(range(len(params)))
+ dpi, width, height = 250, 8500, 1300
+ figsize = width / float(dpi), height / float(dpi)
+ LabelSize, LegendFontsize = 24, 24
+ # resnet_scale, resnet_alpha = 120, 0.5
+ xscale, xalpha = 120, 0.8
+
+ fig, axs = plt.subplots(1, 4, figsize=figsize)
+ # ax1, ax2, ax3, ax4, ax5 = axs
+ for ax in axs:
+ for tick in ax.xaxis.get_major_ticks():
+ tick.label.set_fontsize(LabelSize)
+ ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.0f'))
+ for tick in ax.yaxis.get_major_ticks():
+ tick.label.set_fontsize(LabelSize)
+ ax2, ax3, ax4, ax5 = axs
+ # ax1.xaxis.set_ticks(np.arange(0, max(indexes), max(indexes)//5))
+ # ax1.scatter(indexes, test_accs, marker='o', s=0.5, c='tab:blue')
+ # ax1.set_xlabel('architecture ID', fontsize=LabelSize)
+ # ax1.set_ylabel('test accuracy (%)', fontsize=LabelSize)
+
+ ax2.scatter(params, train_accs, marker='o', s=0.5, c='tab:blue')
+ ax2.scatter([params[x] for x in resnet_indexes] , [train_accs[x] for x in resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha)
+ ax2.scatter([params[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
+ ax2.set_xlabel('#parameters (MB)', fontsize=LabelSize)
+ ax2.set_ylabel('train accuracy (%)', fontsize=LabelSize)
+ ax2.legend(loc=4, fontsize=LegendFontsize)
+
+ ax3.scatter(params, test_accs, marker='o', s=0.5, c='tab:blue')
+ ax3.scatter([params[x] for x in resnet_indexes] , [test_accs[x] for x in resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha)
+ ax3.scatter([params[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
+ ax3.set_xlabel('#parameters (MB)', fontsize=LabelSize)
+ ax3.set_ylabel('test accuracy (%)', fontsize=LabelSize)
+ ax3.legend(loc=4, fontsize=LegendFontsize)
+
+ ax4.scatter(flops, train_accs, marker='o', s=0.5, c='tab:blue')
+ ax4.scatter([flops[x] for x in resnet_indexes], [train_accs[x] for x in resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha)
+ ax4.scatter([flops[x] for x in largest_indexes], [train_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
+ ax4.set_xlabel('#FLOPs (M)', fontsize=LabelSize)
+ ax4.set_ylabel('train accuracy (%)', fontsize=LabelSize)
+ ax4.legend(loc=4, fontsize=LegendFontsize)
+
+ ax5.scatter(flops, test_accs, marker='o', s=0.5, c='tab:blue')
+ ax5.scatter([flops[x] for x in resnet_indexes], [test_accs[x] for x in resnet_indexes], marker='*', s=xscale, c='tab:orange', label='ResNet', alpha=xalpha)
+ ax5.scatter([flops[x] for x in largest_indexes], [test_accs[x] for x in largest_indexes], marker='x', s=xscale, c='tab:green', label='Largest Candidate', alpha=xalpha)
+ ax5.set_xlabel('#FLOPs (M)', fontsize=LabelSize)
+ ax5.set_ylabel('test accuracy (%)', fontsize=LabelSize)
+ ax5.legend(loc=4, fontsize=LegendFontsize)
+
+ save_path = vis_save_dir / 'tss-{:}.png'.format(dataset)
+ fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
+ print ('{:} save into {:}'.format(time_string(), save_path))
+ plt.close('all')
+
+
+def test_issue_81_82(api):
+ results = api.query_by_index(0, 'cifar10')
+ results = api.query_by_index(0, 'cifar10-valid', hp='200')
+ print(results.keys())
+ print(results[888].get_eval('x-valid'))
+ result_dict = api.get_more_info(index=0, dataset='cifar10-valid', iepoch=11, hp='200', is_random=False)
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+ parser.add_argument('--save_dir', type=str, default='output/NAS-BENCH-202', help='Folder to save checkpoints and log.')
+ parser.add_argument('--check_N', type=int, default=32768, help='For safety.')
+ # use for train the model
+ args = parser.parse_args()
+
+ api201 = NASBench201API(os.path.join(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_0-e61699.pth'), verbose=True)
+ test_issue_81_82(api201)
+ test_api(api201, False)
+ api201 = NASBench201API(None, verbose=True)
+ test_issue_81_82(api201)
+ visualize_tss_info(api201, 'cifar10', Path('output/vis-nas-bench'))
+ visualize_tss_info(api201, 'cifar100', Path('output/vis-nas-bench'))
+ visualize_tss_info(api201, 'ImageNet16-120', Path('output/vis-nas-bench'))
+ test_api(api201, False)
+
+ api301 = NASBench301API(None, verbose=True)
+ visualize_sss_info(api301, 'cifar10', Path('output/vis-nas-bench'))
+ visualize_sss_info(api301, 'cifar100', Path('output/vis-nas-bench'))
+ visualize_sss_info(api301, 'ImageNet16-120', Path('output/vis-nas-bench'))
+ test_api(api301, True)
+
+ # save_dir = '{:}/visual'.format(args.save_dir)
diff --git a/exps/NAS-Bench-201/test-weights.py b/exps/NAS-Bench-201/test-weights.py
index 20db0c0..fdaed79 100644
--- a/exps/NAS-Bench-201/test-weights.py
+++ b/exps/NAS-Bench-201/test-weights.py
@@ -38,7 +38,6 @@ def evaluate(api, weight_dir, data: str, use_12epochs_result: bool):
final_test_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []})
for idx in range(len(api)):
# info = api.get_more_info(idx, data, use_12epochs_result=use_12epochs_result, is_random=False)
- # import pdb; pdb.set_trace()
for key in ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']:
info = api.get_more_info(idx, key, use_12epochs_result=False, is_random=False)
if key == 'cifar10-valid':
diff --git a/exps/NAS-Bench-201/xshape-collect.py b/exps/NAS-Bench-201/xshape-collect.py
new file mode 100644
index 0000000..96d10a7
--- /dev/null
+++ b/exps/NAS-Bench-201/xshape-collect.py
@@ -0,0 +1,242 @@
+#####################################################
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
+#####################################################
+# python exps/NAS-Bench-201/xshape-collect.py
+#####################################################
+import os, re, sys, time, argparse, collections
+import numpy as np
+import torch
+from tqdm import tqdm
+from pathlib import Path
+from collections import defaultdict, OrderedDict
+from typing import Dict, Any, Text, List
+lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
+if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
+from log_utils import AverageMeter, time_string, convert_secs2time
+from config_utils import dict2config
+# NAS-Bench-201 related module or function
+from models import CellStructure, get_cell_based_tiny_net
+from nas_201_api import NASBench301API, ArchResults, ResultsCount
+from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders
+
+
+def account_one_arch(arch_index: int, arch_str: Text, checkpoints: List[Text], datasets: List[Text]) -> ArchResults:
+ information = ArchResults(arch_index, arch_str)
+
+ for checkpoint_path in checkpoints:
+ try:
+ checkpoint = torch.load(checkpoint_path, map_location='cpu')
+ except:
+ raise ValueError('This checkpoint failed to be loaded : {:}'.format(checkpoint_path))
+ used_seed = checkpoint_path.name.split('-')[-1].split('.')[0]
+ ok_dataset = 0
+ for dataset in datasets:
+ if dataset not in checkpoint:
+ print('Can not find {:} in arch-{:} from {:}'.format(dataset, arch_index, checkpoint_path))
+ continue
+ else:
+ ok_dataset += 1
+ results = checkpoint[dataset]
+ assert results['finish-train'], 'This {:} arch seed={:} does not finish train on {:} ::: {:}'.format(arch_index, used_seed, dataset, checkpoint_path)
+ arch_config = {'name': 'infer.shape.tiny', 'channels': arch_str, 'arch_str': arch_str,
+ 'genotype': results['arch_config']['genotype'],
+ 'class_num': results['arch_config']['num_classes']}
+ xresult = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'],
+ results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None)
+ xresult.update_train_info(results['train_acc1es'], results['train_acc5es'], results['train_losses'], results['train_times'])
+ xresult.update_eval(results['valid_acc1es'], results['valid_losses'], results['valid_times'])
+ information.update(dataset, int(used_seed), xresult)
+ if ok_dataset < len(datasets): raise ValueError('{:} does find enought data : {:} vs {:}'.format(checkpoint_path, ok_dataset, len(datasets)))
+ return information
+
+
+def correct_time_related_info(hp2info: Dict[Text, ArchResults]):
+ # calibrate the latency based on the number of epochs = 01, since they are trained on the same machine.
+ x1 = hp2info['01'].get_metrics('cifar10-valid', 'x-valid')['all_time'] / 98
+ x2 = hp2info['01'].get_metrics('cifar10-valid', 'ori-test')['all_time'] / 40
+ cifar010_latency = (x1 + x2) / 2
+ for hp, arch_info in hp2info.items():
+ arch_info.reset_latency('cifar10-valid', None, cifar010_latency)
+ arch_info.reset_latency('cifar10', None, cifar010_latency)
+ # hp2info['01'].get_latency('cifar10')
+
+ x1 = hp2info['01'].get_metrics('cifar100', 'ori-test')['all_time'] / 40
+ x2 = hp2info['01'].get_metrics('cifar100', 'x-test')['all_time'] / 20
+ x3 = hp2info['01'].get_metrics('cifar100', 'x-valid')['all_time'] / 20
+ cifar100_latency = (x1 + x2 + x3) / 3
+ for hp, arch_info in hp2info.items():
+ arch_info.reset_latency('cifar100', None, cifar100_latency)
+
+ x1 = hp2info['01'].get_metrics('ImageNet16-120', 'ori-test')['all_time'] / 24
+ x2 = hp2info['01'].get_metrics('ImageNet16-120', 'x-test')['all_time'] / 12
+ x3 = hp2info['01'].get_metrics('ImageNet16-120', 'x-valid')['all_time'] / 12
+ image_latency = (x1 + x2 + x3) / 3
+ for hp, arch_info in hp2info.items():
+ arch_info.reset_latency('ImageNet16-120', None, image_latency)
+
+ # CIFAR10 VALID
+ train_per_epoch_time = list(hp2info['01'].query('cifar10-valid', 777).train_times.values())
+ train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
+ eval_ori_test_time, eval_x_valid_time = [], []
+ for key, value in hp2info['01'].query('cifar10-valid', 777).eval_times.items():
+ if key.startswith('ori-test@'):
+ eval_ori_test_time.append(value)
+ elif key.startswith('x-valid@'):
+ eval_x_valid_time.append(value)
+ else: raise ValueError('-- {:} --'.format(key))
+ eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time)
+ eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time)
+ for hp, arch_info in hp2info.items():
+ arch_info.reset_pseudo_train_times('cifar10-valid', None, train_per_epoch_time)
+ arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'x-valid', eval_x_valid_time)
+ arch_info.reset_pseudo_eval_times('cifar10-valid', None, 'ori-test', eval_ori_test_time)
+
+ # CIFAR10
+ train_per_epoch_time = list(hp2info['01'].query('cifar10', 777).train_times.values())
+ train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
+ eval_ori_test_time = []
+ for key, value in hp2info['01'].query('cifar10', 777).eval_times.items():
+ if key.startswith('ori-test@'):
+ eval_ori_test_time.append(value)
+ else: raise ValueError('-- {:} --'.format(key))
+ eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time)
+ for hp, arch_info in hp2info.items():
+ arch_info.reset_pseudo_train_times('cifar10', None, train_per_epoch_time)
+ arch_info.reset_pseudo_eval_times('cifar10', None, 'ori-test', eval_ori_test_time)
+
+ # CIFAR100
+ train_per_epoch_time = list(hp2info['01'].query('cifar100', 777).train_times.values())
+ train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
+ eval_ori_test_time, eval_x_valid_time, eval_x_test_time = [], [], []
+ for key, value in hp2info['01'].query('cifar100', 777).eval_times.items():
+ if key.startswith('ori-test@'):
+ eval_ori_test_time.append(value)
+ elif key.startswith('x-valid@'):
+ eval_x_valid_time.append(value)
+ elif key.startswith('x-test@'):
+ eval_x_test_time.append(value)
+ else: raise ValueError('-- {:} --'.format(key))
+ eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time)
+ eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time)
+ eval_x_test_time = sum(eval_x_test_time) / len(eval_x_test_time)
+ for hp, arch_info in hp2info.items():
+ arch_info.reset_pseudo_train_times('cifar100', None, train_per_epoch_time)
+ arch_info.reset_pseudo_eval_times('cifar100', None, 'x-valid', eval_x_valid_time)
+ arch_info.reset_pseudo_eval_times('cifar100', None, 'x-test', eval_x_test_time)
+ arch_info.reset_pseudo_eval_times('cifar100', None, 'ori-test', eval_ori_test_time)
+
+ # ImageNet16-120
+ train_per_epoch_time = list(hp2info['01'].query('ImageNet16-120', 777).train_times.values())
+ train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
+ eval_ori_test_time, eval_x_valid_time, eval_x_test_time = [], [], []
+ for key, value in hp2info['01'].query('ImageNet16-120', 777).eval_times.items():
+ if key.startswith('ori-test@'):
+ eval_ori_test_time.append(value)
+ elif key.startswith('x-valid@'):
+ eval_x_valid_time.append(value)
+ elif key.startswith('x-test@'):
+ eval_x_test_time.append(value)
+ else: raise ValueError('-- {:} --'.format(key))
+ eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time)
+ eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time)
+ eval_x_test_time = sum(eval_x_test_time) / len(eval_x_test_time)
+ for hp, arch_info in hp2info.items():
+ arch_info.reset_pseudo_train_times('ImageNet16-120', None, train_per_epoch_time)
+ arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-valid', eval_x_valid_time)
+ arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'x-test', eval_x_test_time)
+ arch_info.reset_pseudo_eval_times('ImageNet16-120', None, 'ori-test', eval_ori_test_time)
+ return hp2info
+
+
+def simplify(save_dir, save_name, nets, total):
+
+ hps, seeds = ['01', '12', '90'], set()
+ for hp in hps:
+ sub_save_dir = save_dir / 'raw-data-{:}'.format(hp)
+ ckps = sorted(list(sub_save_dir.glob('arch-*-seed-*.pth')))
+ seed2names = defaultdict(list)
+ for ckp in ckps:
+ parts = re.split('-|\.', ckp.name)
+ seed2names[parts[3]].append(ckp.name)
+ print('DIR : {:}'.format(sub_save_dir))
+ nums = []
+ for seed, xlist in seed2names.items():
+ seeds.add(seed)
+ nums.append(len(xlist))
+ print(' seed={:}, num={:}'.format(seed, len(xlist)))
+ # assert len(nets) == total == max(nums), 'there are some missed files : {:} vs {:}'.format(max(nums), total)
+ print('{:} start simplify the checkpoint.'.format(time_string()))
+
+ datasets = ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120')
+
+ simplify_save_dir, arch2infos, evaluated_indexes = save_dir / save_name, {}, set()
+ simplify_save_dir.mkdir(parents=True, exist_ok=True)
+ end_time, arch_time = time.time(), AverageMeter()
+ # for index, arch_str in enumerate(nets):
+ for index in tqdm(range(total)):
+ arch_str = nets[index]
+ hp2info = OrderedDict()
+ for hp in hps:
+ sub_save_dir = save_dir / 'raw-data-{:}'.format(hp)
+ ckps = [sub_save_dir / 'arch-{:06d}-seed-{:}.pth'.format(index, seed) for seed in seeds]
+ ckps = [x for x in ckps if x.exists()]
+ if len(ckps) == 0: raise ValueError('Invalid data : index={:}, hp={:}'.format(index, hp))
+
+ arch_info = account_one_arch(index, arch_str, ckps, datasets)
+ hp2info[hp] = arch_info
+
+ hp2info = correct_time_related_info(hp2info)
+ evaluated_indexes.add(index)
+
+ to_save_data = OrderedDict({'01': hp2info['01'].state_dict(),
+ '12': hp2info['12'].state_dict(),
+ '90': hp2info['90'].state_dict()})
+ torch.save(to_save_data, simplify_save_dir / '{:}-FULL.pth'.format(index))
+
+ for hp in hps: hp2info[hp].clear_params()
+ to_save_data = OrderedDict({'01': hp2info['01'].state_dict(),
+ '12': hp2info['12'].state_dict(),
+ '90': hp2info['90'].state_dict()})
+ torch.save(to_save_data, simplify_save_dir / '{:}-SIMPLE.pth'.format(index))
+ arch2infos[index] = to_save_data
+ # measure elapsed time
+ arch_time.update(time.time() - end_time)
+ end_time = time.time()
+ need_time = '{:}'.format(convert_secs2time(arch_time.avg * (total-index-1), True))
+ # print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time))
+ print('{:} {:} done.'.format(time_string(), save_name))
+ final_infos = {'meta_archs' : nets,
+ 'total_archs': total,
+ 'arch2infos' : arch2infos,
+ 'evaluated_indexes': evaluated_indexes}
+ save_file_name = save_dir / '{:}.pth'.format(save_name)
+ torch.save(final_infos, save_file_name)
+ print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), total, save_file_name))
+
+
+def traverse_net(candidates: List[int], N: int):
+ nets = ['']
+ for i in range(N):
+ new_nets = []
+ for net in nets:
+ for C in candidates:
+ new_nets.append(str(C) if net == '' else "{:}:{:}".format(net,C))
+ nets = new_nets
+ return nets
+
+
+if __name__ == '__main__':
+
+ parser = argparse.ArgumentParser(description='NAS-BENCH-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+ parser.add_argument('--base_save_dir', type=str, default='./output/NAS-BENCH-202', help='The base-name of folder to save checkpoints and log.')
+ parser.add_argument('--candidateC' , type=int, nargs='+', default=[8, 16, 24, 32, 40, 48, 56, 64], help='.')
+ parser.add_argument('--num_layers' , type=int, default=5, help='The number of layers in a network.')
+ parser.add_argument('--check_N' , type=int, default=32768, help='For safety.')
+ parser.add_argument('--save_name' , type=str, default='simplify', help='The save directory.')
+ args = parser.parse_args()
+
+ nets = traverse_net(args.candidateC, args.num_layers)
+ if len(nets) != args.check_N: raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N))
+
+ save_dir = Path(args.base_save_dir)
+ simplify(save_dir, args.save_name, nets, args.check_N)
diff --git a/exps/NAS-Bench-201/xshape-file.py b/exps/NAS-Bench-201/xshape-file.py
index 16754fa..49d48c2 100644
--- a/exps/NAS-Bench-201/xshape-file.py
+++ b/exps/NAS-Bench-201/xshape-file.py
@@ -22,7 +22,7 @@ from log_utils import Logger, AverageMeter, time_string, convert_secs2time
def obtain_valid_ckp(save_dir: Text, total: int):
- possible_seeds = [777, 888]
+ possible_seeds = [777, 888, 999]
seed2ckps = defaultdict(list)
miss2ckps = defaultdict(list)
for i in range(total):
@@ -33,7 +33,7 @@ def obtain_valid_ckp(save_dir: Text, total: int):
else:
miss2ckps[seed].append(i)
for seed, xlist in seed2ckps.items():
- print('[{:}] [seed={:}] has {:}/{:}'.format(save_dir, seed, len(xlist), total))
+ print('[{:}] [seed={:}] has {:5d}/{:5d} | miss {:5d}/{:5d}'.format(save_dir, seed, len(xlist), total, total-len(xlist), total))
return dict(seed2ckps), dict(miss2ckps)
diff --git a/exps/algos/BOHB.py b/exps/algos/BOHB.py
index 71dcc79..18e9c5d 100644
--- a/exps/algos/BOHB.py
+++ b/exps/algos/BOHB.py
@@ -65,7 +65,7 @@ class MyWorker(Worker):
assert len(self.seen_archs) > 0
best_index, best_acc = -1, None
for arch_index in self.seen_archs:
- info = self._nas_bench.get_more_info(arch_index, self._dataname, None, True, True)
+ info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True)
vacc = info['valid-accuracy']
if best_acc is None or best_acc < vacc:
best_acc = vacc
@@ -77,7 +77,7 @@ class MyWorker(Worker):
start_time = time.time()
structure = self.convert_func( config )
arch_index = self._nas_bench.query_index_by_arch( structure )
- info = self._nas_bench.get_more_info(arch_index, self._dataname, None, True, True)
+ info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True)
cur_time = info['train-all-time'] + info['valid-per-time']
cur_vacc = info['valid-accuracy']
self.real_cost_time += (time.time() - start_time)
diff --git a/exps/algos/R_EA.py b/exps/algos/R_EA.py
index 780aaaf..b507bba 100644
--- a/exps/algos/R_EA.py
+++ b/exps/algos/R_EA.py
@@ -42,7 +42,7 @@ def train_and_eval(arch, nas_bench, extra_info, dataname='cifar10-valid', use_01
if use_012_epoch_training and nas_bench is not None:
arch_index = nas_bench.query_index_by_arch( arch )
assert arch_index >= 0, 'can not find this arch : {:}'.format(arch)
- info = nas_bench.get_more_info(arch_index, dataname, None, True)
+ info = nas_bench.get_more_info(arch_index, dataname, iepoch=None, hp='12', is_random=True)
valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time']
#_, valid_acc = info.get_metrics('cifar10-valid', 'x-valid' , 25, True) # use the validation accuracy after 25 training epochs
elif not use_012_epoch_training and nas_bench is not None:
@@ -51,10 +51,10 @@ def train_and_eval(arch, nas_bench, extra_info, dataname='cifar10-valid', use_01
# It did return values for cifar100 and ImageNet16-120, but it has some potential issues. (Please email me for more details)
arch_index, nepoch = nas_bench.query_index_by_arch( arch ), 25
assert arch_index >= 0, 'can not find this arch : {:}'.format(arch)
- xoinfo = nas_bench.get_more_info(arch_index, 'cifar10-valid', None, True)
- xocost = nas_bench.get_cost_info(arch_index, 'cifar10-valid', False)
- info = nas_bench.get_more_info(arch_index, dataname, nepoch, False, True) # use the validation accuracy after 25 training epochs, which is used in our ICLR submission (not the camera ready).
- cost = nas_bench.get_cost_info(arch_index, dataname, False)
+ xoinfo = nas_bench.get_more_info(arch_index, 'cifar10-valid', iepoch=None, hp='12')
+ xocost = nas_bench.get_cost_info(arch_index, 'cifar10-valid', hp='200')
+ info = nas_bench.get_more_info(arch_index, dataname, nepoch, hp='200', True) # use the validation accuracy after 25 training epochs, which is used in our ICLR submission (not the camera ready).
+ cost = nas_bench.get_cost_info(arch_index, dataname, hp='200')
# The following codes are used to estimate the time cost.
# When we build NAS-Bench-201, architectures are trained on different machines and we can not use that time record.
# When we create checkpoints for converged_LR, we run all experiments on 1080Ti, and thus the time for each architecture can be fairly compared.
diff --git a/exps/experimental/test-api.py b/exps/experimental/test-api.py
new file mode 100644
index 0000000..e6c25cd
--- /dev/null
+++ b/exps/experimental/test-api.py
@@ -0,0 +1,20 @@
+#
+# exps/experimental/test-api.py
+#
+import sys, time, random, argparse
+from copy import deepcopy
+import torchvision.models as models
+from pathlib import Path
+lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
+if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
+
+from nas_201_api import NASBench201API as API
+
+
+def main():
+ api = API(None)
+ info = api.get_more_info(100, 'cifar100', 199, False, True)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/lib/models/cell_searchs/genotypes.py b/lib/models/cell_searchs/genotypes.py
index 5ccc283..dcaa60c 100644
--- a/lib/models/cell_searchs/genotypes.py
+++ b/lib/models/cell_searchs/genotypes.py
@@ -112,6 +112,7 @@ class Structure:
@staticmethod
def str2structure(xstr):
+ if isinstance(xstr, Structure): return xstr
assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr))
nodestrs = xstr.split('+')
genotypes = []
diff --git a/lib/nas_201_api/__init__.py b/lib/nas_201_api/__init__.py
index 12c10da..5fd84d6 100644
--- a/lib/nas_201_api/__init__.py
+++ b/lib/nas_201_api/__init__.py
@@ -1,9 +1,11 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
#####################################################
-from .api import NASBench201API
-from .api import ArchResults, ResultsCount
+from .api_utils import ArchResults, ResultsCount
+from .api_201 import NASBench201API
+from .api_301 import NASBench301API
# NAS_BENCH_201_API_VERSION="v1.1" # [2020.02.25]
# NAS_BENCH_201_API_VERSION="v1.2" # [2020.03.09]
-NAS_BENCH_201_API_VERSION="v1.3" # [2020.03.16]
+# NAS_BENCH_201_API_VERSION="v1.3" # [2020.03.16]
+NAS_BENCH_201_API_VERSION="v2.0" # [2020.06.30]
diff --git a/lib/nas_201_api/api.py b/lib/nas_201_api/api.py
deleted file mode 100644
index 6d61a18..0000000
--- a/lib/nas_201_api/api.py
+++ /dev/null
@@ -1,916 +0,0 @@
-#####################################################
-# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
-############################################################################################
-# NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 #
-############################################################################################
-# The history of benchmark files:
-# [2020.02.25] NAS-Bench-201-v1_0-e61699.pth : 6219 architectures are trained once, 1621 architectures are trained twice, 7785 architectures are trained three times. `LESS` only supports CIFAR10-VALID.
-# [2020.03.16] NAS-Bench-201-v1_1-096897.pth : 2225 architectures are trained once, 5439 archiitectures are trained twice, 7961 architectures are trained three times on all training sets. For the hyper-parameters with the total epochs of 12, each model is trained on CIFAR-10, CIFAR-100, ImageNet16-120 once, and is trained on CIFAR-10-VALID twice.
-#
-# I'm still actively enhancing this benchmark. Please feel free to contact me if you have any question w.r.t. NAS-Bench-201.
-#
-import os, copy, random, torch, numpy as np
-from pathlib import Path
-from typing import List, Text, Union, Dict
-from collections import OrderedDict, defaultdict
-
-
-def print_information(information, extra_info=None, show=False):
- dataset_names = information.get_dataset_names()
- strings = [information.arch_str, 'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info)]
- def metric2str(loss, acc):
- return 'loss = {:.3f}, top1 = {:.2f}%'.format(loss, acc)
-
- for ida, dataset in enumerate(dataset_names):
- metric = information.get_compute_costs(dataset)
- flop, param, latency = metric['flops'], metric['params'], metric['latency']
- str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(dataset, flop, param, '{:.2f}'.format(latency*1000) if latency is not None and latency > 0 else None)
- train_info = information.get_metrics(dataset, 'train')
- if dataset == 'cifar10-valid':
- valid_info = information.get_metrics(dataset, 'x-valid')
- str2 = '{:14s} train : [{:}], valid : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']))
- elif dataset == 'cifar10':
- test__info = information.get_metrics(dataset, 'ori-test')
- str2 = '{:14s} train : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
- else:
- valid_info = information.get_metrics(dataset, 'x-valid')
- test__info = information.get_metrics(dataset, 'x-test')
- str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
- strings += [str1, str2]
- if show: print('\n'.join(strings))
- return strings
-
-"""
-This is the class for API of NAS-Bench-201.
-"""
-class NASBench201API(object):
-
- """ The initialization function that takes the dataset file path (or a dict loaded from that path) as input. """
- def __init__(self, file_path_or_dict: Union[Text, Dict], verbose: bool=True):
- self.filename = None
- if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path):
- file_path_or_dict = str(file_path_or_dict)
- if verbose: print('try to create the NAS-Bench-201 api from {:}'.format(file_path_or_dict))
- assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict)
- self.filename = Path(file_path_or_dict).name
- file_path_or_dict = torch.load(file_path_or_dict, map_location='cpu')
- elif isinstance(file_path_or_dict, dict):
- file_path_or_dict = copy.deepcopy( file_path_or_dict )
- else: raise ValueError('invalid type : {:} not in [str, dict]'.format(type(file_path_or_dict)))
- assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict))
- self.verbose = verbose # [TODO] a flag indicating whether to print more logs
- keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
- for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
- self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] )
- self.arch2infos_less = OrderedDict()
- self.arch2infos_full = OrderedDict()
- for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
- all_info = file_path_or_dict['arch2infos'][xkey]
- self.arch2infos_less[xkey] = ArchResults.create_from_state_dict( all_info['less'] )
- self.arch2infos_full[xkey] = ArchResults.create_from_state_dict( all_info['full'] )
- self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes']))
- self.archstr2index = {}
- for idx, arch in enumerate(self.meta_archs):
- #assert arch.tostr() not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch.tostr()])
- assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch])
- self.archstr2index[ arch ] = idx
-
- def __getitem__(self, index: int):
- return copy.deepcopy( self.meta_archs[index] )
-
- def __len__(self):
- return len(self.meta_archs)
-
- def __repr__(self):
- return ('{name}({num}/{total} architectures, file={filename})'.format(name=self.__class__.__name__, num=len(self.evaluated_indexes), total=len(self.meta_archs), filename=self.filename))
-
- def random(self):
- """Return a random index of all architectures."""
- return random.randint(0, len(self.meta_archs)-1)
-
- # This function is used to query the index of an architecture in the search space.
- # The input arch can be an architecture string such as '|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|'
- # or an instance that has the 'tostr' function that can generate the architecture string.
- # This function will return the index.
- # If return -1, it means this architecture is not in the search space.
- # Otherwise, it will return an int in [0, the-number-of-candidates-in-the-search-space).
- def query_index_by_arch(self, arch):
- if isinstance(arch, str):
- if arch in self.archstr2index: arch_index = self.archstr2index[ arch ]
- else : arch_index = -1
- elif hasattr(arch, 'tostr'):
- if arch.tostr() in self.archstr2index: arch_index = self.archstr2index[ arch.tostr() ]
- else : arch_index = -1
- else: arch_index = -1
- return arch_index
-
- def reload(self, archive_root: Text, index: int):
- """Overwrite all information of the 'index'-th architecture in the search space.
- It will load its data from 'archive_root'.
- """
- assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root)
- xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(index))
- assert 0 <= index < len(self.meta_archs), 'invalid index of {:}'.format(index)
- assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path)
- xdata = torch.load(xfile_path, map_location='cpu')
- assert isinstance(xdata, dict) and 'full' in xdata and 'less' in xdata, 'invalid format of data in {:}'.format(xfile_path)
- if index in self.arch2infos_less: del self.arch2infos_less[index]
- if index in self.arch2infos_full: del self.arch2infos_full[index]
- self.arch2infos_less[index] = ArchResults.create_from_state_dict( xdata['less'] )
- self.arch2infos_full[index] = ArchResults.create_from_state_dict( xdata['full'] )
-
- def clear_params(self, index: int, use_12epochs_result: Union[bool, None]):
- """Remove the architecture's weights to save memory.
- :arg
- index: the index of the target architecture
- use_12epochs_result: a flag to controll how to clear the parameters.
- -- None: clear all the weights in both `less` and `full`, which indicates the training hyper-parameters.
- -- True: clear all the weights in arch2infos_less, which by default is 12-epoch-training result.
- -- False: clear all the weights in arch2infos_full, which by default is 200-epoch-training result.
- """
- if use_12epochs_result is None:
- self.arch2infos_less[index].clear_params()
- self.arch2infos_full[index].clear_params()
- else:
- if use_12epochs_result: arch2infos = self.arch2infos_less
- else : arch2infos = self.arch2infos_full
- arch2infos[index].clear_params()
-
- # This function is used to query the information of a specific archiitecture
- # 'arch' can be an architecture index or an architecture string
- # When use_12epochs_result=True, the hyper-parameters used to train a model are in 'configs/nas-benchmark/CIFAR.config'
- # When use_12epochs_result=False, the hyper-parameters used to train a model are in 'configs/nas-benchmark/LESS.config'
- # The difference between these two configurations are the number of training epochs, which is 200 in CIFAR.config and 12 in LESS.config.
- def query_by_arch(self, arch, use_12epochs_result=False):
- if isinstance(arch, int):
- arch_index = arch
- else:
- arch_index = self.query_index_by_arch(arch)
- if arch_index == -1: return None # the following two lines are used to support few training epochs
- if use_12epochs_result: arch2infos = self.arch2infos_less
- else : arch2infos = self.arch2infos_full
- if arch_index in arch2infos:
- strings = print_information(arch2infos[ arch_index ], 'arch-index={:}'.format(arch_index))
- return '\n'.join(strings)
- else:
- print ('Find this arch-index : {:}, but this arch is not evaluated.'.format(arch_index))
- return None
-
- # This 'query_by_index' function is used to query information with the training of 12 epochs or 200 epochs.
- # ------
- # If use_12epochs_result=True, we train the model by 12 epochs (see config in configs/nas-benchmark/LESS.config)
- # If use_12epochs_result=False, we train the model by 200 epochs (see config in configs/nas-benchmark/CIFAR.config)
- # ------
- # If dataname is None, return the ArchResults
- # else, return a dict with all trials on that dataset (the key is the seed)
- # Options are 'cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'.
- # -- cifar10-valid : training the model on the CIFAR-10 training set.
- # -- cifar10 : training the model on the CIFAR-10 training + validation set.
- # -- cifar100 : training the model on the CIFAR-100 training set.
- # -- ImageNet16-120 : training the model on the ImageNet16-120 training set.
- def query_by_index(self, arch_index: int, dataname: Union[None, Text] = None,
- use_12epochs_result: bool = False):
- if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less
- else : basestr, arch2infos = '200epochs', self.arch2infos_full
- assert arch_index in arch2infos, 'arch_index [{:}] does not in arch2info with {:}'.format(arch_index, basestr)
- archInfo = copy.deepcopy( arch2infos[ arch_index ] )
- if dataname is None: return archInfo
- else:
- assert dataname in archInfo.get_dataset_names(), 'invalid dataset-name : {:}'.format(dataname)
- info = archInfo.query(dataname)
- return info
-
- def query_meta_info_by_index(self, arch_index, use_12epochs_result=False):
- if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less
- else : basestr, arch2infos = '200epochs', self.arch2infos_full
- assert arch_index in arch2infos, 'arch_index [{:}] does not in arch2info with {:}'.format(arch_index, basestr)
- archInfo = copy.deepcopy( arch2infos[ arch_index ] )
- return archInfo
-
- def find_best(self, dataset, metric_on_set, FLOP_max=None, Param_max=None, use_12epochs_result=False):
- """Find the architecture with the highest accuracy based on some constraints."""
- if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less
- else : basestr, arch2infos = '200epochs', self.arch2infos_full
- best_index, highest_accuracy = -1, None
- for i, idx in enumerate(self.evaluated_indexes):
- info = arch2infos[idx].get_compute_costs(dataset)
- flop, param, latency = info['flops'], info['params'], info['latency']
- if FLOP_max is not None and flop > FLOP_max : continue
- if Param_max is not None and param > Param_max: continue
- xinfo = arch2infos[idx].get_metrics(dataset, metric_on_set)
- loss, accuracy = xinfo['loss'], xinfo['accuracy']
- if best_index == -1:
- best_index, highest_accuracy = idx, accuracy
- elif highest_accuracy < accuracy:
- best_index, highest_accuracy = idx, accuracy
- return best_index, highest_accuracy
-
- def arch(self, index: int):
- """Return the topology structure of the `index`-th architecture."""
- assert 0 <= index < len(self.meta_archs), 'invalid index : {:} vs. {:}.'.format(index, len(self.meta_archs))
- return copy.deepcopy(self.meta_archs[index])
-
- def get_net_param(self, index, dataset, seed, use_12epochs_result=False):
- """
- This function is used to obtain the trained weights of the `index`-th architecture on `dataset` with the seed of `seed`
- Args [seed]:
- -- None : return a dict containing the trained weights of all trials, where each key is a seed and its corresponding value is the weights.
- -- a interger : return the weights of a specific trial, whose seed is this interger.
- Args [use_12epochs_result]:
- -- True : train the model by 12 epochs
- -- False : train the model by 200 epochs
- """
- if use_12epochs_result: arch2infos = self.arch2infos_less
- else: arch2infos = self.arch2infos_full
- arch_result = arch2infos[index]
- return arch_result.get_net_param(dataset, seed)
-
- def get_net_config(self, index: int, dataset: Text):
- """
- This function is used to obtain the configuration for the `index`-th architecture on `dataset`.
- Args [dataset] (4 possible options):
- -- cifar10-valid : training the model on the CIFAR-10 training set.
- -- cifar10 : training the model on the CIFAR-10 training + validation set.
- -- cifar100 : training the model on the CIFAR-100 training set.
- -- ImageNet16-120 : training the model on the ImageNet16-120 training set.
- This function will return a dict.
- ========= Some examlpes for using this function:
- config = api.get_net_config(128, 'cifar10')
- """
- archresult = self.arch2infos_full[index]
- all_results = archresult.query(dataset, None)
- if len(all_results) == 0: raise ValueError('can not find one valid trial for the {:}-th architecture on {:}'.format(index, dataset))
- for seed, result in all_results.items():
- return result.get_config(None)
- #print ('SEED [{:}] : {:}'.format(seed, result))
- raise ValueError('Impossible to reach here!')
-
- def get_cost_info(self, index: int, dataset: Text, use_12epochs_result: bool = False) -> Dict[Text, float]:
- """To obtain the cost metric for the `index`-th architecture on a dataset."""
- if use_12epochs_result: arch2infos = self.arch2infos_less
- else: arch2infos = self.arch2infos_full
- arch_result = arch2infos[index]
- return arch_result.get_compute_costs(dataset)
-
- def get_latency(self, index: int, dataset: Text, use_12epochs_result: bool = False) -> float:
- """
- To obtain the latency of the network (by default it will return the latency with the batch size of 256).
- :param index: the index of the target architecture
- :param dataset: the dataset name (cifar10-valid, cifar10, cifar100, ImageNet16-120)
- :return: return a float value in seconds
- """
- cost_dict = self.get_cost_info(index, dataset, use_12epochs_result)
- return cost_dict['latency']
-
- # obtain the metric for the `index`-th architecture
- # `dataset` indicates the dataset:
- # 'cifar10-valid' : using the proposed train set of CIFAR-10 as the training set
- # 'cifar10' : using the proposed train+valid set of CIFAR-10 as the training set
- # 'cifar100' : using the proposed train set of CIFAR-100 as the training set
- # 'ImageNet16-120' : using the proposed train set of ImageNet-16-120 as the training set
- # `iepoch` indicates the index of training epochs from 0 to 11/199.
- # When iepoch=None, it will return the metric for the last training epoch
- # When iepoch=11, it will return the metric for the 11-th training epoch (starting from 0)
- # `use_12epochs_result` indicates different hyper-parameters for training
- # When use_12epochs_result=True, it trains the network with 12 epochs and the LR decayed from 0.1 to 0 within 12 epochs
- # When use_12epochs_result=False, it trains the network with 200 epochs and the LR decayed from 0.1 to 0 within 200 epochs
- # `is_random`
- # When is_random=True, the performance of a random architecture will be returned
- # When is_random=False, the performanceo of all trials will be averaged.
- def get_more_info(self, index: int, dataset, iepoch=None, use_12epochs_result=False, is_random=True):
- if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less
- else : basestr, arch2infos = '200epochs', self.arch2infos_full
- archresult = arch2infos[index]
- # if randomly select one trial, select the seed at first
- if isinstance(is_random, bool) and is_random:
- seeds = archresult.get_dataset_seeds(dataset)
- is_random = random.choice(seeds)
- # collect the training information
- train_info = archresult.get_metrics(dataset, 'train', iepoch=iepoch, is_random=is_random)
- total = train_info['iepoch'] + 1
- xinfo = {'train-loss' : train_info['loss'],
- 'train-accuracy': train_info['accuracy'],
- 'train-per-time': train_info['all_time'] / total,
- 'train-all-time': train_info['all_time']}
- # collect the evaluation information
- if dataset == 'cifar10-valid':
- valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
- try:
- test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
- except:
- test_info = None
- valtest_info = None
- else:
- try: # collect results on the proposed test set
- if dataset == 'cifar10':
- test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
- else:
- test_info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random)
- except:
- test_info = None
- try: # collect results on the proposed validation set
- valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
- except:
- valid_info = None
- try:
- if dataset != 'cifar10':
- valtest_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
- else:
- valtest_info = None
- except:
- valtest_info = None
- if valid_info is not None:
- xinfo['valid-loss'] = valid_info['loss']
- xinfo['valid-accuracy'] = valid_info['accuracy']
- xinfo['valid-per-time'] = valid_info['all_time'] / total
- xinfo['valid-all-time'] = valid_info['all_time']
- if test_info is not None:
- xinfo['test-loss'] = test_info['loss']
- xinfo['test-accuracy'] = test_info['accuracy']
- xinfo['test-per-time'] = test_info['all_time'] / total
- xinfo['test-all-time'] = test_info['all_time']
- if valtest_info is not None:
- xinfo['valtest-loss'] = valtest_info['loss']
- xinfo['valtest-accuracy'] = valtest_info['accuracy']
- xinfo['valtest-per-time'] = valtest_info['all_time'] / total
- xinfo['valtest-all-time'] = valtest_info['all_time']
- return xinfo
- """ # The following logic is deprecated after March 15 2020, where the benchmark file upgrades from NAS-Bench-201-v1_0-e61699.pth to NAS-Bench-201-v1_1-096897.pth.
- def get_more_info(self, index: int, dataset, iepoch=None, use_12epochs_result=False, is_random=True):
- if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less
- else : basestr, arch2infos = '200epochs', self.arch2infos_full
- archresult = arch2infos[index]
- # if randomly select one trial, select the seed at first
- if isinstance(is_random, bool) and is_random:
- seeds = archresult.get_dataset_seeds(dataset)
- is_random = random.choice(seeds)
- if dataset == 'cifar10-valid':
- train_info = archresult.get_metrics(dataset, 'train' , iepoch=iepoch, is_random=is_random)
- valid_info = archresult.get_metrics(dataset, 'x-valid' , iepoch=iepoch, is_random=is_random)
- try:
- test__info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
- except:
- test__info = None
- total = train_info['iepoch'] + 1
- xifo = {'train-loss' : train_info['loss'],
- 'train-accuracy': train_info['accuracy'],
- 'train-per-time': None if train_info['all_time'] is None else train_info['all_time'] / total,
- 'train-all-time': train_info['all_time'],
- 'valid-loss' : valid_info['loss'],
- 'valid-accuracy': valid_info['accuracy'],
- 'valid-all-time': valid_info['all_time'],
- 'valid-per-time': None if valid_info['all_time'] is None else valid_info['all_time'] / total}
- if test__info is not None:
- xifo['test-loss'] = test__info['loss']
- xifo['test-accuracy'] = test__info['accuracy']
- return xifo
- else:
- train_info = archresult.get_metrics(dataset, 'train' , iepoch=iepoch, is_random=is_random)
- try:
- if dataset == 'cifar10':
- test__info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
- else:
- test__info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random)
- except:
- test__info = None
- try:
- valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
- except:
- valid_info = None
- try:
- est_valid_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
- except:
- est_valid_info = None
- xifo = {'train-loss' : train_info['loss'],
- 'train-accuracy': train_info['accuracy']}
- if test__info is not None:
- xifo['test-loss'] = test__info['loss'],
- xifo['test-accuracy'] = test__info['accuracy']
- if valid_info is not None:
- xifo['valid-loss'] = valid_info['loss']
- xifo['valid-accuracy'] = valid_info['accuracy']
- if est_valid_info is not None:
- xifo['est-valid-loss'] = est_valid_info['loss']
- xifo['est-valid-accuracy'] = est_valid_info['accuracy']
- return xifo
- """
-
- def show(self, index: int = -1) -> None:
- """
- This function will print the information of a specific (or all) architecture(s).
-
- :param index: If the index < 0: it will loop for all architectures and print their information one by one.
- else: it will print the information of the 'index'-th archiitecture.
- :return: nothing
- """
- if index < 0: # show all architectures
- print(self)
- for i, idx in enumerate(self.evaluated_indexes):
- print('\n' + '-' * 10 + ' The ({:5d}/{:5d}) {:06d}-th architecture! '.format(i, len(self.evaluated_indexes), idx) + '-'*10)
- print('arch : {:}'.format(self.meta_archs[idx]))
- strings = print_information(self.arch2infos_full[idx])
- print('>' * 40 + ' {:03d} epochs '.format(self.arch2infos_full[idx].get_total_epoch()) + '>' * 40)
- print('\n'.join(strings))
- strings = print_information(self.arch2infos_less[idx])
- print('>' * 40 + ' {:03d} epochs '.format(self.arch2infos_less[idx].get_total_epoch()) + '>' * 40)
- print('\n'.join(strings))
- print('<' * 40 + '------------' + '<' * 40)
- else:
- if 0 <= index < len(self.meta_archs):
- if index not in self.evaluated_indexes: print('The {:}-th architecture has not been evaluated or not saved.'.format(index))
- else:
- strings = print_information(self.arch2infos_full[index])
- print('>' * 40 + ' {:03d} epochs '.format(self.arch2infos_full[index].get_total_epoch()) + '>' * 40)
- print('\n'.join(strings))
- strings = print_information(self.arch2infos_less[index])
- print('>' * 40 + ' {:03d} epochs '.format(self.arch2infos_less[index].get_total_epoch()) + '>' * 40)
- print('\n'.join(strings))
- print('<' * 40 + '------------' + '<' * 40)
- else:
- print('This index ({:}) is out of range (0~{:}).'.format(index, len(self.meta_archs)))
-
- def statistics(self, dataset: Text, use_12epochs_result: bool) -> Dict[int, int]:
- """
- This function will count the number of total trials.
- """
- valid_datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']
- if dataset not in valid_datasets:
- raise ValueError('{:} not in {:}'.format(dataset, valid_datasets))
- if use_12epochs_result: arch2infos = self.arch2infos_less
- else : arch2infos = self.arch2infos_full
- nums = defaultdict(lambda: 0)
- for index in range(len(self)):
- archInfo = arch2infos[index]
- dataset_seed = archInfo.dataset_seed
- if dataset not in dataset_seed:
- nums[0] += 1
- else:
- nums[len(dataset_seed[dataset])] += 1
- return dict(nums)
-
- @staticmethod
- def str2lists(arch_str: Text) -> List[tuple]:
- """
- This function shows how to read the string-based architecture encoding.
- It is the same as the `str2structure` func in `AutoDL-Projects/lib/models/cell_searchs/genotypes.py`
-
- :param
- arch_str: the input is a string indicates the architecture topology, such as
- |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|
- :return: a list of tuple, contains multiple (op, input_node_index) pairs.
-
- :usage
- arch = api.str2lists( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' )
- print ('there are {:} nodes in this arch'.format(len(arch)+1)) # arch is a list
- for i, node in enumerate(arch):
- print('the {:}-th node is the sum of these {:} nodes with op: {:}'.format(i+1, len(node), node))
- """
- node_strs = arch_str.split('+')
- genotypes = []
- for i, node_str in enumerate(node_strs):
- inputs = list(filter(lambda x: x != '', node_str.split('|')))
- for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
- inputs = ( xi.split('~') for xi in inputs )
- input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs)
- genotypes.append( input_infos )
- return genotypes
-
- @staticmethod
- def str2matrix(arch_str: Text,
- search_space: List[Text] = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']) -> np.ndarray:
- """
- This func shows how to convert the string-based architecture encoding to the encoding strategy in NAS-Bench-101.
-
- :param
- arch_str: the input is a string indicates the architecture topology, such as
- |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|
- search_space: a list of operation string, the default list is the search space for NAS-Bench-201
- the default value should be be consistent with this line https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/models/cell_operations.py#L24
- :return
- the numpy matrix (2-D np.ndarray) representing the DAG of this architecture topology
- :usage
- matrix = api.str2matrix( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' )
- This matrix is 4-by-4 matrix representing a cell with 4 nodes (only the lower left triangle is useful).
- [ [0, 0, 0, 0], # the first line represents the input (0-th) node
- [2, 0, 0, 0], # the second line represents the 1-st node, is calculated by 2-th-op( 0-th-node )
- [0, 0, 0, 0], # the third line represents the 2-nd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node )
- [0, 0, 1, 0] ] # the fourth line represents the 3-rd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node ) + 1-th-op( 2-th-node )
- In NAS-Bench-201 search space, 0-th-op is 'none', 1-th-op is 'skip_connect',
- 2-th-op is 'nor_conv_1x1', 3-th-op is 'nor_conv_3x3', 4-th-op is 'avg_pool_3x3'.
- :(NOTE)
- If a node has two input-edges from the same node, this function does not work. One edge will be overlapped.
- """
- node_strs = arch_str.split('+')
- num_nodes = len(node_strs) + 1
- matrix = np.zeros((num_nodes, num_nodes))
- for i, node_str in enumerate(node_strs):
- inputs = list(filter(lambda x: x != '', node_str.split('|')))
- for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
- for xi in inputs:
- op, idx = xi.split('~')
- if op not in search_space: raise ValueError('this op ({:}) is not in {:}'.format(op, search_space))
- op_idx, node_idx = search_space.index(op), int(idx)
- matrix[i+1, node_idx] = op_idx
- return matrix
-
-
-class ArchResults(object):
-
- def __init__(self, arch_index, arch_str):
- self.arch_index = int(arch_index)
- self.arch_str = copy.deepcopy(arch_str)
- self.all_results = dict()
- self.dataset_seed = dict()
- self.clear_net_done = False
-
- def get_compute_costs(self, dataset):
- x_seeds = self.dataset_seed[dataset]
- results = [self.all_results[ (dataset, seed) ] for seed in x_seeds]
-
- flops = [result.flop for result in results]
- params = [result.params for result in results]
- latencies = [result.get_latency() for result in results]
- latencies = [x for x in latencies if x > 0]
- mean_latency = np.mean(latencies) if len(latencies) > 0 else None
- time_infos = defaultdict(list)
- for result in results:
- time_info = result.get_times()
- for key, value in time_info.items(): time_infos[key].append( value )
-
- info = {'flops' : np.mean(flops),
- 'params' : np.mean(params),
- 'latency': mean_latency}
- for key, value in time_infos.items():
- if len(value) > 0 and value[0] is not None:
- info[key] = np.mean(value)
- else: info[key] = None
- return info
-
- def get_metrics(self, dataset, setname, iepoch=None, is_random=False):
- """
- This `get_metrics` function is used to obtain obtain the loss, accuracy, etc information on a specific dataset.
- If not specify, each set refer to the proposed split in NAS-Bench-201 paper.
- If some args return None or raise error, then it is not avaliable.
- ========================================
- Args [dataset] (4 possible options):
- -- cifar10-valid : training the model on the CIFAR-10 training set.
- -- cifar10 : training the model on the CIFAR-10 training + validation set.
- -- cifar100 : training the model on the CIFAR-100 training set.
- -- ImageNet16-120 : training the model on the ImageNet16-120 training set.
- Args [setname] (each dataset has different setnames):
- -- When dataset = cifar10-valid, you can use 'train', 'x-valid', 'ori-test'
- ------ 'train' : the metric on the training set.
- ------ 'x-valid' : the metric on the validation set.
- ------ 'ori-test' : the metric on the test set.
- -- When dataset = cifar10, you can use 'train', 'ori-test'.
- ------ 'train' : the metric on the training + validation set.
- ------ 'ori-test' : the metric on the test set.
- -- When dataset = cifar100 or ImageNet16-120, you can use 'train', 'ori-test', 'x-valid', 'x-test'
- ------ 'train' : the metric on the training set.
- ------ 'x-valid' : the metric on the validation set.
- ------ 'x-test' : the metric on the test set.
- ------ 'ori-test' : the metric on the validation + test set.
- Args [iepoch] (None or an integer in [0, the-number-of-total-training-epochs)
- ------ None : return the metric after the last training epoch.
- ------ an integer i : return the metric after the i-th training epoch.
- Args [is_random]:
- ------ True : return the metric of a randomly selected trial.
- ------ False : return the averaged metric of all avaliable trials.
- ------ an integer indicating the 'seed' value : return the metric of a specific trial (whose random seed is 'is_random').
- """
- x_seeds = self.dataset_seed[dataset]
- results = [self.all_results[ (dataset, seed) ] for seed in x_seeds]
- infos = defaultdict(list)
- for result in results:
- if setname == 'train':
- info = result.get_train(iepoch)
- else:
- info = result.get_eval(setname, iepoch)
- for key, value in info.items(): infos[key].append( value )
- return_info = dict()
- if isinstance(is_random, bool) and is_random: # randomly select one
- index = random.randint(0, len(results)-1)
- for key, value in infos.items(): return_info[key] = value[index]
- elif isinstance(is_random, bool) and not is_random: # average
- for key, value in infos.items():
- if len(value) > 0 and value[0] is not None:
- return_info[key] = np.mean(value)
- else: return_info[key] = None
- elif isinstance(is_random, int): # specify the seed
- if is_random not in x_seeds: raise ValueError('can not find random seed ({:}) from {:}'.format(is_random, x_seeds))
- index = x_seeds.index(is_random)
- for key, value in infos.items(): return_info[key] = value[index]
- else:
- raise ValueError('invalid value for is_random: {:}'.format(is_random))
- return return_info
-
- def show(self, is_print=False):
- return print_information(self, None, is_print)
-
- def get_dataset_names(self):
- return list(self.dataset_seed.keys())
-
- def get_dataset_seeds(self, dataset):
- return copy.deepcopy( self.dataset_seed[dataset] )
-
- def get_net_param(self, dataset: Text, seed: Union[None, int] =None):
- """
- This function will return the trained network's weights on the 'dataset'.
- :arg
- dataset: one of 'cifar10-valid', 'cifar10', 'cifar100', and 'ImageNet16-120'.
- seed: an integer indicates the seed value or None that indicates returing all trials.
- """
- if seed is None:
- x_seeds = self.dataset_seed[dataset]
- return {seed: self.all_results[(dataset, seed)].get_net_param() for seed in x_seeds}
- else:
- return self.all_results[(dataset, seed)].get_net_param()
-
- def reset_latency(self, dataset: Text, seed: Union[None, Text], latency: float) -> None:
- """This function is used to reset the latency in all corresponding ResultsCount(s)."""
- if seed is None:
- for seed in self.dataset_seed[dataset]:
- self.all_results[(dataset, seed)].update_latency([latency])
- else:
- self.all_results[(dataset, seed)].update_latency([latency])
-
- def reset_pseudo_train_times(self, dataset: Text, seed: Union[None, Text], estimated_per_epoch_time: float) -> None:
- """This function is used to reset the train-times in all corresponding ResultsCount(s)."""
- if seed is None:
- for seed in self.dataset_seed[dataset]:
- self.all_results[(dataset, seed)].reset_pseudo_train_times(estimated_per_epoch_time)
- else:
- self.all_results[(dataset, seed)].reset_pseudo_train_times(estimated_per_epoch_time)
-
- def reset_pseudo_eval_times(self, dataset: Text, seed: Union[None, Text], eval_name: Text, estimated_per_epoch_time: float) -> None:
- """This function is used to reset the eval-times in all corresponding ResultsCount(s)."""
- if seed is None:
- for seed in self.dataset_seed[dataset]:
- self.all_results[(dataset, seed)].reset_pseudo_eval_times(eval_name, estimated_per_epoch_time)
- else:
- self.all_results[(dataset, seed)].reset_pseudo_eval_times(eval_name, estimated_per_epoch_time)
-
- def get_latency(self, dataset: Text) -> float:
- """Get the latency of a model on the target dataset. [Timestamp: 2020.03.09]"""
- latencies = []
- for seed in self.dataset_seed[dataset]:
- latency = self.all_results[(dataset, seed)].get_latency()
- if not isinstance(latency, float) or latency <= 0:
- raise ValueError('invalid latency of {:} for {:} with {:}'.format(dataset))
- latencies.append(latency)
- return sum(latencies) / len(latencies)
-
- def get_total_epoch(self, dataset=None):
- """Return the total number of training epochs."""
- if dataset is None:
- epochss = []
- for xdata, x_seeds in self.dataset_seed.items():
- epochss += [self.all_results[(xdata, seed)].get_total_epoch() for seed in x_seeds]
- elif isinstance(dataset, str):
- x_seeds = self.dataset_seed[dataset]
- epochss = [self.all_results[(dataset, seed)].get_total_epoch() for seed in x_seeds]
- else:
- raise ValueError('invalid dataset={:}'.format(dataset))
- if len(set(epochss)) > 1: raise ValueError('Each trial mush have the same number of training epochs : {:}'.format(epochss))
- return epochss[-1]
-
- def query(self, dataset, seed=None):
- """Return the ResultsCount object (containing all information of a single trial) for 'dataset' and 'seed'"""
- if seed is None:
- x_seeds = self.dataset_seed[dataset]
- return {seed: self.all_results[(dataset, seed)] for seed in x_seeds}
- else:
- return self.all_results[(dataset, seed)]
-
- def arch_idx_str(self):
- return '{:06d}'.format(self.arch_index)
-
- def update(self, dataset_name, seed, result):
- if dataset_name not in self.dataset_seed:
- self.dataset_seed[dataset_name] = []
- assert seed not in self.dataset_seed[dataset_name], '{:}-th arch alreadly has this seed ({:}) on {:}'.format(self.arch_index, seed, dataset_name)
- self.dataset_seed[ dataset_name ].append( seed )
- self.dataset_seed[ dataset_name ] = sorted( self.dataset_seed[ dataset_name ] )
- assert (dataset_name, seed) not in self.all_results
- self.all_results[ (dataset_name, seed) ] = result
- self.clear_net_done = False
-
- def state_dict(self):
- state_dict = dict()
- for key, value in self.__dict__.items():
- if key == 'all_results': # contain the class of ResultsCount
- xvalue = dict()
- assert isinstance(value, dict), 'invalid type of value for {:} : {:}'.format(key, type(value))
- for _k, _v in value.items():
- assert isinstance(_v, ResultsCount), 'invalid type of value for {:}/{:} : {:}'.format(key, _k, type(_v))
- xvalue[_k] = _v.state_dict()
- else:
- xvalue = value
- state_dict[key] = xvalue
- return state_dict
-
- def load_state_dict(self, state_dict):
- new_state_dict = dict()
- for key, value in state_dict.items():
- if key == 'all_results': # to convert to the class of ResultsCount
- xvalue = dict()
- assert isinstance(value, dict), 'invalid type of value for {:} : {:}'.format(key, type(value))
- for _k, _v in value.items():
- xvalue[_k] = ResultsCount.create_from_state_dict(_v)
- else: xvalue = value
- new_state_dict[key] = xvalue
- self.__dict__.update(new_state_dict)
-
- @staticmethod
- def create_from_state_dict(state_dict_or_file):
- x = ArchResults(-1, -1)
- if isinstance(state_dict_or_file, str): # a file path
- state_dict = torch.load(state_dict_or_file, map_location='cpu')
- elif isinstance(state_dict_or_file, dict):
- state_dict = state_dict_or_file
- else:
- raise ValueError('invalid type of state_dict_or_file : {:}'.format(type(state_dict_or_file)))
- x.load_state_dict(state_dict)
- return x
-
- # This function is used to clear the weights saved in each 'result'
- # This can help reduce the memory footprint.
- def clear_params(self):
- for key, result in self.all_results.items():
- del result.net_state_dict
- result.net_state_dict = None
- self.clear_net_done = True
-
- def debug_test(self):
- """This function is used for me to debug and test, which will call most methods."""
- all_dataset = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']
- for dataset in all_dataset:
- print('---->>>> {:}'.format(dataset))
- print('The latency on {:} is {:} s'.format(dataset, self.get_latency(dataset)))
- for seed in self.dataset_seed[dataset]:
- result = self.all_results[(dataset, seed)]
- print(' ==>> result = {:}'.format(result))
- print(' ==>> cost = {:}'.format(result.get_times()))
-
- def __repr__(self):
- return ('{name}(arch-index={index}, arch={arch}, {num} runs, clear={clear})'.format(name=self.__class__.__name__, index=self.arch_index, arch=self.arch_str, num=len(self.all_results), clear=self.clear_net_done))
-
-
-"""
-This class (ResultsCount) is used to save the information of one trial for a single architecture.
-I did not write much comment for this class, because it is the lowest-level class in NAS-Bench-201 API, which will be rarely called.
-If you have any question regarding this class, please open an issue or email me.
-"""
-class ResultsCount(object):
-
- def __init__(self, name, state_dict, train_accs, train_losses, params, flop, arch_config, seed, epochs, latency):
- self.name = name
- self.net_state_dict = state_dict
- self.train_acc1es = copy.deepcopy(train_accs)
- self.train_acc5es = None
- self.train_losses = copy.deepcopy(train_losses)
- self.train_times = None
- self.arch_config = copy.deepcopy(arch_config)
- self.params = params
- self.flop = flop
- self.seed = seed
- self.epochs = epochs
- self.latency = latency
- # evaluation results
- self.reset_eval()
-
- def update_train_info(self, train_acc1es, train_acc5es, train_losses, train_times) -> None:
- self.train_acc1es = train_acc1es
- self.train_acc5es = train_acc5es
- self.train_losses = train_losses
- self.train_times = train_times
-
- def reset_pseudo_train_times(self, estimated_per_epoch_time: float) -> None:
- """Assign the training times."""
- train_times = OrderedDict()
- for i in range(self.epochs):
- train_times[i] = estimated_per_epoch_time
- self.train_times = train_times
-
- def reset_pseudo_eval_times(self, eval_name: Text, estimated_per_epoch_time: float) -> None:
- """Assign the evaluation times."""
- if eval_name not in self.eval_names: raise ValueError('invalid eval name : {:}'.format(eval_name))
- for i in range(self.epochs):
- self.eval_times['{:}@{:}'.format(eval_name,i)] = estimated_per_epoch_time
-
- def reset_eval(self):
- self.eval_names = []
- self.eval_acc1es = {}
- self.eval_times = {}
- self.eval_losses = {}
-
- def update_latency(self, latency):
- self.latency = copy.deepcopy( latency )
-
- def get_latency(self) -> float:
- """Return the latency value in seconds. -1 represents not avaliable ; otherwise it should be a float value"""
- if self.latency is None: return -1.0
- else: return sum(self.latency) / len(self.latency)
-
- def update_eval(self, accs, losses, times): # new version
- data_names = set([x.split('@')[0] for x in accs.keys()])
- for data_name in data_names:
- assert data_name not in self.eval_names, '{:} has already been added into eval-names'.format(data_name)
- self.eval_names.append( data_name )
- for iepoch in range(self.epochs):
- xkey = '{:}@{:}'.format(data_name, iepoch)
- self.eval_acc1es[ xkey ] = accs[ xkey ]
- self.eval_losses[ xkey ] = losses[ xkey ]
- self.eval_times [ xkey ] = times[ xkey ]
-
- def update_OLD_eval(self, name, accs, losses): # old version
- assert name not in self.eval_names, '{:} has already added'.format(name)
- self.eval_names.append( name )
- for iepoch in range(self.epochs):
- if iepoch in accs:
- self.eval_acc1es['{:}@{:}'.format(name,iepoch)] = accs[iepoch]
- self.eval_losses['{:}@{:}'.format(name,iepoch)] = losses[iepoch]
-
- def __repr__(self):
- num_eval = len(self.eval_names)
- set_name = '[' + ', '.join(self.eval_names) + ']'
- return ('{name}({xname}, arch={arch}, FLOP={flop:.2f}M, Param={param:.3f}MB, seed={seed}, {num_eval} eval-sets: {set_name})'.format(name=self.__class__.__name__, xname=self.name, arch=self.arch_config['arch_str'], flop=self.flop, param=self.params, seed=self.seed, num_eval=num_eval, set_name=set_name))
-
- def get_total_epoch(self):
- return copy.deepcopy(self.epochs)
-
- def get_times(self):
- """Obtain the information regarding both training and evaluation time."""
- if self.train_times is not None and isinstance(self.train_times, dict):
- train_times = list( self.train_times.values() )
- time_info = {'T-train@epoch': np.mean(train_times), 'T-train@total': np.sum(train_times)}
- else:
- time_info = {'T-train@epoch': None, 'T-train@total': None }
- for name in self.eval_names:
- try:
- xtimes = [self.eval_times['{:}@{:}'.format(name,i)] for i in range(self.epochs)]
- time_info['T-{:}@epoch'.format(name)] = np.mean(xtimes)
- time_info['T-{:}@total'.format(name)] = np.sum(xtimes)
- except:
- time_info['T-{:}@epoch'.format(name)] = None
- time_info['T-{:}@total'.format(name)] = None
- return time_info
-
- def get_eval_set(self):
- return self.eval_names
-
- # get the training information
- def get_train(self, iepoch=None):
- if iepoch is None: iepoch = self.epochs-1
- assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs)
- if self.train_times is not None:
- xtime = self.train_times[iepoch]
- atime = sum([self.train_times[i] for i in range(iepoch+1)])
- else: xtime, atime = None, None
- return {'iepoch' : iepoch,
- 'loss' : self.train_losses[iepoch],
- 'accuracy': self.train_acc1es[iepoch],
- 'cur_time': xtime,
- 'all_time': atime}
-
- def get_eval(self, name, iepoch=None):
- """Get the evaluation information ; there could be multiple evaluation sets (identified by the 'name' argument)."""
- if iepoch is None: iepoch = self.epochs-1
- assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs)
- if isinstance(self.eval_times,dict) and len(self.eval_times) > 0:
- xtime = self.eval_times['{:}@{:}'.format(name,iepoch)]
- atime = sum([self.eval_times['{:}@{:}'.format(name,i)] for i in range(iepoch+1)])
- else: xtime, atime = None, None
- return {'iepoch' : iepoch,
- 'loss' : self.eval_losses['{:}@{:}'.format(name,iepoch)],
- 'accuracy': self.eval_acc1es['{:}@{:}'.format(name,iepoch)],
- 'cur_time': xtime,
- 'all_time': atime}
-
- def get_net_param(self, clone=False):
- if clone: return copy.deepcopy(self.net_state_dict)
- else: return self.net_state_dict
-
- def get_config(self, str2structure):
- """This function is used to obtain the config dict for this architecture."""
- if str2structure is None:
- return {'name': 'infer.tiny', 'C': self.arch_config['channel'],
- 'N' : self.arch_config['num_cells'],
- 'arch_str': self.arch_config['arch_str'], 'num_classes': self.arch_config['class_num']}
- else:
- return {'name': 'infer.tiny', 'C': self.arch_config['channel'],
- 'N' : self.arch_config['num_cells'],
- 'genotype': str2structure(self.arch_config['arch_str']), 'num_classes': self.arch_config['class_num']}
-
- def state_dict(self):
- _state_dict = {key: value for key, value in self.__dict__.items()}
- return _state_dict
-
- def load_state_dict(self, state_dict):
- self.__dict__.update(state_dict)
-
- @staticmethod
- def create_from_state_dict(state_dict):
- x = ResultsCount(None, None, None, None, None, None, None, None, None, None)
- x.load_state_dict(state_dict)
- return x
diff --git a/lib/nas_201_api/api_201.py b/lib/nas_201_api/api_201.py
new file mode 100644
index 0000000..f5accd0
--- /dev/null
+++ b/lib/nas_201_api/api_201.py
@@ -0,0 +1,269 @@
+#####################################################
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
+############################################################################################
+# NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 #
+############################################################################################
+# The history of benchmark files:
+# [2020.02.25] NAS-Bench-201-v1_0-e61699.pth : 6219 architectures are trained once, 1621 architectures are trained twice, 7785 architectures are trained three times. `LESS` only supports CIFAR10-VALID.
+# [2020.03.16] NAS-Bench-201-v1_1-096897.pth : 2225 architectures are trained once, 5439 archiitectures are trained twice, 7961 architectures are trained three times on all training sets. For the hyper-parameters with the total epochs of 12, each model is trained on CIFAR-10, CIFAR-100, ImageNet16-120 once, and is trained on CIFAR-10-VALID twice.
+#
+# I'm still actively enhancing this benchmark. Please feel free to contact me if you have any question w.r.t. NAS-Bench-201.
+#
+import os, copy, random, torch, numpy as np
+from pathlib import Path
+from typing import List, Text, Union, Dict, Optional
+from collections import OrderedDict, defaultdict
+
+from .api_utils import ArchResults
+from .api_utils import NASBenchMetaAPI
+from .api_utils import remap_dataset_set_names
+
+
+ALL_BENCHMARK_FILES = ['NAS-Bench-201-v1_0-e61699.pth', 'NAS-Bench-201-v1_1-096897.pth']
+ALL_ARCHIVE_DIRS = ['NAS-Bench-201-v1_1-archive']
+
+
+def print_information(information, extra_info=None, show=False):
+ dataset_names = information.get_dataset_names()
+ strings = [information.arch_str, 'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info)]
+ def metric2str(loss, acc):
+ return 'loss = {:.3f}, top1 = {:.2f}%'.format(loss, acc)
+
+ for ida, dataset in enumerate(dataset_names):
+ metric = information.get_compute_costs(dataset)
+ flop, param, latency = metric['flops'], metric['params'], metric['latency']
+ str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(dataset, flop, param, '{:.2f}'.format(latency*1000) if latency is not None and latency > 0 else None)
+ train_info = information.get_metrics(dataset, 'train')
+ if dataset == 'cifar10-valid':
+ valid_info = information.get_metrics(dataset, 'x-valid')
+ str2 = '{:14s} train : [{:}], valid : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']))
+ elif dataset == 'cifar10':
+ test__info = information.get_metrics(dataset, 'ori-test')
+ str2 = '{:14s} train : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
+ else:
+ valid_info = information.get_metrics(dataset, 'x-valid')
+ test__info = information.get_metrics(dataset, 'x-test')
+ str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
+ strings += [str1, str2]
+ if show: print('\n'.join(strings))
+ return strings
+
+
+"""
+This is the class for the API of NAS-Bench-201.
+"""
+class NASBench201API(NASBenchMetaAPI):
+
+ """ The initialization function that takes the dataset file path (or a dict loaded from that path) as input. """
+ def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None,
+ verbose: bool=True):
+ self.filename = None
+ if file_path_or_dict is None:
+ file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1])
+ print ('Try to use the default NAS-Bench-201 path from {:}.'.format(file_path_or_dict))
+ if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path):
+ file_path_or_dict = str(file_path_or_dict)
+ if verbose: print('try to create the NAS-Bench-201 api from {:}'.format(file_path_or_dict))
+ assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict)
+ self.filename = Path(file_path_or_dict).name
+ file_path_or_dict = torch.load(file_path_or_dict, map_location='cpu')
+ elif isinstance(file_path_or_dict, dict):
+ file_path_or_dict = copy.deepcopy(file_path_or_dict)
+ else: raise ValueError('invalid type : {:} not in [str, dict]'.format(type(file_path_or_dict)))
+ assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict))
+ self.verbose = verbose # [TODO] a flag indicating whether to print more logs
+ keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
+ for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
+ self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] )
+ # This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults
+ self.arch2infos_dict = OrderedDict()
+ for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
+ all_info = file_path_or_dict['arch2infos'][xkey]
+ hp2archres = OrderedDict()
+ # self.arch2infos_less[xkey] = ArchResults.create_from_state_dict( all_info['less'] )
+ # self.arch2infos_full[xkey] = ArchResults.create_from_state_dict( all_info['full'] )
+ hp2archres['12'] = ArchResults.create_from_state_dict(all_info['less'])
+ hp2archres['200'] = ArchResults.create_from_state_dict(all_info['full'])
+ self.arch2infos_dict[xkey] = hp2archres
+ self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes']))
+ self.archstr2index = {}
+ for idx, arch in enumerate(self.meta_archs):
+ assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch])
+ self.archstr2index[ arch ] = idx
+
+ def reload(self, archive_root: Text = None, index: int = None):
+ """Overwrite all information of the 'index'-th architecture in the search space.
+ It will load its data from 'archive_root'.
+ """
+ if archive_root is None:
+ archive_root = os.path.join(os.environ['TORCH_HOME'], ALL_ARCHIVE_DIRS[-1])
+ assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root)
+ if index is None:
+ indexes = list(range(len(self)))
+ else:
+ indexes = [index]
+ for idx in indexes:
+ assert 0 <= idx < len(self.meta_archs), 'invalid index of {:}'.format(idx)
+ xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(idx))
+ assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path)
+ xdata = torch.load(xfile_path, map_location='cpu')
+ assert isinstance(xdata, dict) and 'full' in xdata and 'less' in xdata, 'invalid format of data in {:}'.format(xfile_path)
+ hp2archres = OrderedDict()
+ hp2archres['12'] = ArchResults.create_from_state_dict(xdata['less'])
+ hp2archres['200'] = ArchResults.create_from_state_dict(xdata['full'])
+ self.arch2infos_dict[idx] = hp2archres
+
+ def query_info_str_by_arch(self, arch, hp: Text='12'):
+ """ This function is used to query the information of a specific architecture
+ 'arch' can be an architecture index or an architecture string
+ When hp=12, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/12E.config'
+ When hp=200, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/200E.config'
+ The difference between these three configurations are the number of training epochs.
+ """
+ if self.verbose:
+ print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp))
+ self._query_info_str_by_arch(arch, hp, print_information)
+
+ # obtain the metric for the `index`-th architecture
+ # `dataset` indicates the dataset:
+ # 'cifar10-valid' : using the proposed train set of CIFAR-10 as the training set
+ # 'cifar10' : using the proposed train+valid set of CIFAR-10 as the training set
+ # 'cifar100' : using the proposed train set of CIFAR-100 as the training set
+ # 'ImageNet16-120' : using the proposed train set of ImageNet-16-120 as the training set
+ # `iepoch` indicates the index of training epochs from 0 to 11/199.
+ # When iepoch=None, it will return the metric for the last training epoch
+ # When iepoch=11, it will return the metric for the 11-th training epoch (starting from 0)
+ # `use_12epochs_result` indicates different hyper-parameters for training
+ # When use_12epochs_result=True, it trains the network with 12 epochs and the LR decayed from 0.1 to 0 within 12 epochs
+ # When use_12epochs_result=False, it trains the network with 200 epochs and the LR decayed from 0.1 to 0 within 200 epochs
+ # `is_random`
+ # When is_random=True, the performance of a random architecture will be returned
+ # When is_random=False, the performanceo of all trials will be averaged.
+ def get_more_info(self, index: int, dataset, iepoch=None, hp='12', is_random=True):
+ if self.verbose:
+ print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random))
+ archresult = self.arch2infos_dict[index][str(hp)]
+ # if randomly select one trial, select the seed at first
+ if isinstance(is_random, bool) and is_random:
+ seeds = archresult.get_dataset_seeds(dataset)
+ is_random = random.choice(seeds)
+ # collect the training information
+ train_info = archresult.get_metrics(dataset, 'train', iepoch=iepoch, is_random=is_random)
+ total = train_info['iepoch'] + 1
+ xinfo = {'train-loss' : train_info['loss'],
+ 'train-accuracy': train_info['accuracy'],
+ 'train-per-time': train_info['all_time'] / total if train_info['all_time'] is not None else None,
+ 'train-all-time': train_info['all_time']}
+ # collect the evaluation information
+ if dataset == 'cifar10-valid':
+ valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
+ try:
+ test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
+ except:
+ test_info = None
+ valtest_info = None
+ else:
+ try: # collect results on the proposed test set
+ if dataset == 'cifar10':
+ test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
+ else:
+ test_info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random)
+ except:
+ test_info = None
+ try: # collect results on the proposed validation set
+ valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
+ except:
+ valid_info = None
+ try:
+ if dataset != 'cifar10':
+ valtest_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
+ else:
+ valtest_info = None
+ except:
+ valtest_info = None
+ if valid_info is not None:
+ xinfo['valid-loss'] = valid_info['loss']
+ xinfo['valid-accuracy'] = valid_info['accuracy']
+ xinfo['valid-per-time'] = valid_info['all_time'] / total
+ xinfo['valid-all-time'] = valid_info['all_time']
+ if test_info is not None:
+ xinfo['test-loss'] = test_info['loss']
+ xinfo['test-accuracy'] = test_info['accuracy']
+ xinfo['test-per-time'] = test_info['all_time'] / total
+ xinfo['test-all-time'] = test_info['all_time']
+ if valtest_info is not None:
+ xinfo['valtest-loss'] = valtest_info['loss']
+ xinfo['valtest-accuracy'] = valtest_info['accuracy']
+ xinfo['valtest-per-time'] = valtest_info['all_time'] / total
+ xinfo['valtest-all-time'] = valtest_info['all_time']
+ return xinfo
+
+ def show(self, index: int = -1) -> None:
+ """This function will print the information of a specific (or all) architecture(s)."""
+ self._show(index, print_information)
+
+ @staticmethod
+ def str2lists(arch_str: Text) -> List[tuple]:
+ """
+ This function shows how to read the string-based architecture encoding.
+ It is the same as the `str2structure` func in `AutoDL-Projects/lib/models/cell_searchs/genotypes.py`
+
+ :param
+ arch_str: the input is a string indicates the architecture topology, such as
+ |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|
+ :return: a list of tuple, contains multiple (op, input_node_index) pairs.
+
+ :usage
+ arch = api.str2lists( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' )
+ print ('there are {:} nodes in this arch'.format(len(arch)+1)) # arch is a list
+ for i, node in enumerate(arch):
+ print('the {:}-th node is the sum of these {:} nodes with op: {:}'.format(i+1, len(node), node))
+ """
+ node_strs = arch_str.split('+')
+ genotypes = []
+ for i, node_str in enumerate(node_strs):
+ inputs = list(filter(lambda x: x != '', node_str.split('|')))
+ for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
+ inputs = ( xi.split('~') for xi in inputs )
+ input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs)
+ genotypes.append( input_infos )
+ return genotypes
+
+ @staticmethod
+ def str2matrix(arch_str: Text,
+ search_space: List[Text] = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']) -> np.ndarray:
+ """
+ This func shows how to convert the string-based architecture encoding to the encoding strategy in NAS-Bench-101.
+
+ :param
+ arch_str: the input is a string indicates the architecture topology, such as
+ |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|
+ search_space: a list of operation string, the default list is the search space for NAS-Bench-201
+ the default value should be be consistent with this line https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/models/cell_operations.py#L24
+ :return
+ the numpy matrix (2-D np.ndarray) representing the DAG of this architecture topology
+ :usage
+ matrix = api.str2matrix( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' )
+ This matrix is 4-by-4 matrix representing a cell with 4 nodes (only the lower left triangle is useful).
+ [ [0, 0, 0, 0], # the first line represents the input (0-th) node
+ [2, 0, 0, 0], # the second line represents the 1-st node, is calculated by 2-th-op( 0-th-node )
+ [0, 0, 0, 0], # the third line represents the 2-nd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node )
+ [0, 0, 1, 0] ] # the fourth line represents the 3-rd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node ) + 1-th-op( 2-th-node )
+ In NAS-Bench-201 search space, 0-th-op is 'none', 1-th-op is 'skip_connect',
+ 2-th-op is 'nor_conv_1x1', 3-th-op is 'nor_conv_3x3', 4-th-op is 'avg_pool_3x3'.
+ :(NOTE)
+ If a node has two input-edges from the same node, this function does not work. One edge will be overlapped.
+ """
+ node_strs = arch_str.split('+')
+ num_nodes = len(node_strs) + 1
+ matrix = np.zeros((num_nodes, num_nodes))
+ for i, node_str in enumerate(node_strs):
+ inputs = list(filter(lambda x: x != '', node_str.split('|')))
+ for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
+ for xi in inputs:
+ op, idx = xi.split('~')
+ if op not in search_space: raise ValueError('this op ({:}) is not in {:}'.format(op, search_space))
+ op_idx, node_idx = search_space.index(op), int(idx)
+ matrix[i+1, node_idx] = op_idx
+ return matrix
+
diff --git a/lib/nas_201_api/api_301.py b/lib/nas_201_api/api_301.py
new file mode 100644
index 0000000..1d85b6b
--- /dev/null
+++ b/lib/nas_201_api/api_301.py
@@ -0,0 +1,215 @@
+#####################################################
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
+############################################################################################
+# NAS-Bench-301, coming soon.
+############################################################################################
+# The history of benchmark files:
+# [2020.06.30] NAS-Bench-301-v1_0
+#
+import os, copy, random, torch, numpy as np
+from pathlib import Path
+from typing import List, Text, Union, Dict, Optional
+from collections import OrderedDict, defaultdict
+from .api_utils import ArchResults
+from .api_utils import NASBenchMetaAPI
+from .api_utils import remap_dataset_set_names
+
+
+ALL_BENCHMARK_FILES = ['NAS-Bench-301-v1_0-363be7.pth']
+ALL_ARCHIVE_DIRS = ['NAS-Bench-301-v1_0-archive']
+
+
+def print_information(information, extra_info=None, show=False):
+ dataset_names = information.get_dataset_names()
+ strings = [information.arch_str, 'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info)]
+ def metric2str(loss, acc):
+ return 'loss = {:.3f} & top1 = {:.2f}%'.format(loss, acc)
+
+ for ida, dataset in enumerate(dataset_names):
+ metric = information.get_compute_costs(dataset)
+ flop, param, latency = metric['flops'], metric['params'], metric['latency']
+ str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(dataset, flop, param, '{:.2f}'.format(latency*1000) if latency is not None and latency > 0 else None)
+ train_info = information.get_metrics(dataset, 'train')
+ if dataset == 'cifar10-valid':
+ valid_info = information.get_metrics(dataset, 'x-valid')
+ test__info = information.get_metrics(dataset, 'ori-test')
+ str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(
+ dataset, metric2str(train_info['loss'], train_info['accuracy']),
+ metric2str(valid_info['loss'], valid_info['accuracy']),
+ metric2str(test__info['loss'], test__info['accuracy']))
+ elif dataset == 'cifar10':
+ test__info = information.get_metrics(dataset, 'ori-test')
+ str2 = '{:14s} train : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
+ else:
+ valid_info = information.get_metrics(dataset, 'x-valid')
+ test__info = information.get_metrics(dataset, 'x-test')
+ str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
+ strings += [str1, str2]
+ if show: print('\n'.join(strings))
+ return strings
+
+
+"""
+This is the class for the API of NAS-Bench-301.
+"""
+class NASBench301API(NASBenchMetaAPI):
+
+ """ The initialization function that takes the dataset file path (or a dict loaded from that path) as input. """
+ def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None, verbose: bool=True):
+ self.filename = None
+ if file_path_or_dict is None:
+ file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1])
+ if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path):
+ file_path_or_dict = str(file_path_or_dict)
+ if verbose: print('try to create the NAS-Bench-201 api from {:}'.format(file_path_or_dict))
+ assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict)
+ self.filename = Path(file_path_or_dict).name
+ file_path_or_dict = torch.load(file_path_or_dict, map_location='cpu')
+ elif isinstance(file_path_or_dict, dict):
+ file_path_or_dict = copy.deepcopy( file_path_or_dict )
+ else: raise ValueError('invalid type : {:} not in [str, dict]'.format(type(file_path_or_dict)))
+ assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict))
+ self.verbose = verbose # [TODO] a flag indicating whether to print more logs
+ keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
+ for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
+ self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] )
+ # This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults
+ self.arch2infos_dict = OrderedDict()
+ for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
+ all_infos = file_path_or_dict['arch2infos'][xkey]
+ hp2archres = OrderedDict()
+ for hp_key, results in all_infos.items():
+ hp2archres[hp_key] = ArchResults.create_from_state_dict(results)
+ self.arch2infos_dict[xkey] = hp2archres
+ self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes']))
+ self.archstr2index = {}
+ for idx, arch in enumerate(self.meta_archs):
+ assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch])
+ self.archstr2index[ arch ] = idx
+ if self.verbose:
+ print('Create NAS-Bench-301 done with {:}/{:} architectures avaliable.'.format(len(self.evaluated_indexes), len(self.meta_archs)))
+
+ def reload(self, archive_root: Text = None, index: int = None):
+ """Overwrite all information of the 'index'-th architecture in the search space, where the data will be loaded from 'archive_root'.
+ If index is None, overwrite all ckps.
+ """
+ if self.verbose:
+ print('Call clear_params with archive_root={:} and index={:}'.format(archive_root, index))
+ if archive_root is None:
+ archive_root = os.path.join(os.environ['TORCH_HOME'], ALL_ARCHIVE_DIRS[-1])
+ assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root)
+ if index is None:
+ indexes = list(range(len(self)))
+ else:
+ indexes = [index]
+ for idx in indexes:
+ assert 0 <= idx < len(self.meta_archs), 'invalid index of {:}'.format(idx)
+ xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(idx))
+ if not os.path.isfile(xfile_path):
+ xfile_path = os.path.join(archive_root, '{:d}-FULL.pth'.format(idx))
+ assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path)
+ xdata = torch.load(xfile_path, map_location='cpu')
+ assert isinstance(xdata, dict), 'invalid format of data in {:}'.format(xfile_path)
+
+ hp2archres = OrderedDict()
+ for hp_key, results in xdata.items():
+ hp2archres[hp_key] = ArchResults.create_from_state_dict(results)
+ self.arch2infos_dict[idx] = hp2archres
+
+ def query_info_str_by_arch(self, arch, hp: Text='12'):
+ """ This function is used to query the information of a specific architecture
+ 'arch' can be an architecture index or an architecture string
+ When hp=01, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/01E.config'
+ When hp=12, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/12E.config'
+ When hp=90, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/90E.config'
+ The difference between these three configurations are the number of training epochs.
+ """
+ if self.verbose:
+ print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp))
+ self._query_info_str_by_arch(arch, hp, print_information)
+
+ def get_more_info(self, index: int, dataset: Text, iepoch=None, hp='12', is_random=True):
+ """This function will return the metric for the `index`-th architecture
+ `dataset` indicates the dataset:
+ 'cifar10-valid' : using the proposed train set of CIFAR-10 as the training set
+ 'cifar10' : using the proposed train+valid set of CIFAR-10 as the training set
+ 'cifar100' : using the proposed train set of CIFAR-100 as the training set
+ 'ImageNet16-120' : using the proposed train set of ImageNet-16-120 as the training set
+ `iepoch` indicates the index of training epochs from 0 to 11/199.
+ When iepoch=None, it will return the metric for the last training epoch
+ When iepoch=11, it will return the metric for the 11-th training epoch (starting from 0)
+ `hp` indicates different hyper-parameters for training
+ When hp=01, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 01 epochs
+ When hp=12, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 12 epochs
+ When hp=90, it trains the network with 01 epochs and the LR decayed from 0.1 to 0 within 90 epochs
+ `is_random`
+ When is_random=True, the performance of a random architecture will be returned
+ When is_random=False, the performanceo of all trials will be averaged.
+ """
+ if self.verbose:
+ print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random))
+ archresult = self.arch2infos_dict[index][str(hp)]
+ # if randomly select one trial, select the seed at first
+ if isinstance(is_random, bool) and is_random:
+ seeds = archresult.get_dataset_seeds(dataset)
+ is_random = random.choice(seeds)
+ # collect the training information
+ train_info = archresult.get_metrics(dataset, 'train', iepoch=iepoch, is_random=is_random)
+ total = train_info['iepoch'] + 1
+ xinfo = {'train-loss' : train_info['loss'],
+ 'train-accuracy': train_info['accuracy'],
+ 'train-per-time': train_info['all_time'] / total,
+ 'train-all-time': train_info['all_time']}
+ # collect the evaluation information
+ if dataset == 'cifar10-valid':
+ valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
+ try:
+ test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
+ except:
+ test_info = None
+ valtest_info = None
+ else:
+ try: # collect results on the proposed test set
+ if dataset == 'cifar10':
+ test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
+ else:
+ test_info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random)
+ except:
+ test_info = None
+ try: # collect results on the proposed validation set
+ valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
+ except:
+ valid_info = None
+ try:
+ if dataset != 'cifar10':
+ valtest_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
+ else:
+ valtest_info = None
+ except:
+ valtest_info = None
+ if valid_info is not None:
+ xinfo['valid-loss'] = valid_info['loss']
+ xinfo['valid-accuracy'] = valid_info['accuracy']
+ xinfo['valid-per-time'] = valid_info['all_time'] / total
+ xinfo['valid-all-time'] = valid_info['all_time']
+ if test_info is not None:
+ xinfo['test-loss'] = test_info['loss']
+ xinfo['test-accuracy'] = test_info['accuracy']
+ xinfo['test-per-time'] = test_info['all_time'] / total
+ xinfo['test-all-time'] = test_info['all_time']
+ if valtest_info is not None:
+ xinfo['valtest-loss'] = valtest_info['loss']
+ xinfo['valtest-accuracy'] = valtest_info['accuracy']
+ xinfo['valtest-per-time'] = valtest_info['all_time'] / total
+ xinfo['valtest-all-time'] = valtest_info['all_time']
+ return xinfo
+
+ def show(self, index: int = -1) -> None:
+ """
+ This function will print the information of a specific (or all) architecture(s).
+
+ :param index: If the index < 0: it will loop for all architectures and print their information one by one.
+ else: it will print the information of the 'index'-th architecture.
+ :return: nothing
+ """
+ self._show(index, print_information)
diff --git a/lib/nas_201_api/api_utils.py b/lib/nas_201_api/api_utils.py
new file mode 100644
index 0000000..40fa03e
--- /dev/null
+++ b/lib/nas_201_api/api_utils.py
@@ -0,0 +1,711 @@
+#####################################################
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
+############################################################################################
+# NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 #
+############################################################################################
+# In this Python file, we define NASBenchMetaAPI, the abstract class for benchmark APIs.
+# We also define the class ArchResults, which contains all information of a single architecture trained by one kind of hyper-parameters on three datasets.
+# We also define the class ResultsCount, which contains all information of a single trial for a single architecture.
+############################################################################################
+# History:
+# [2020.06.30] The first version.
+#
+import os, abc, copy, random, torch, numpy as np
+from pathlib import Path
+from typing import List, Text, Union, Dict, Optional
+from collections import OrderedDict, defaultdict
+
+
+def remap_dataset_set_names(dataset, metric_on_set, verbose=False):
+ """re-map the metric_on_set to internal keys"""
+ if verbose:
+ print('Call internal function _remap_dataset_set_names with dataset={:} and metric_on_set={:}'.format(dataset, metric_on_set))
+ if dataset == 'cifar10' and metric_on_set == 'valid':
+ dataset, metric_on_set = 'cifar10-valid', 'x-valid'
+ elif dataset == 'cifar10' and metric_on_set == 'test':
+ dataset, metric_on_set = 'cifar10', 'ori-test'
+ elif dataset == 'cifar10' and metric_on_set == 'train':
+ dataset, metric_on_set = 'cifar10', 'train'
+ elif (dataset == 'cifar100' or dataset == 'ImageNet16-120') and metric_on_set == 'valid':
+ metric_on_set = 'x-valid'
+ elif (dataset == 'cifar100' or dataset == 'ImageNet16-120') and metric_on_set == 'test':
+ metric_on_set = 'x-test'
+ if verbose:
+ print(' return dataset={:} and metric_on_set={:}'.format(dataset, metric_on_set))
+ return dataset, metric_on_set
+
+
+class NASBenchMetaAPI(metaclass=abc.ABCMeta):
+
+ @abc.abstractmethod
+ def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None, verbose: bool=True):
+ """The initialization function that takes the dataset file path (or a dict loaded from that path) as input."""
+
+ def __getitem__(self, index: int):
+ return copy.deepcopy(self.meta_archs[index])
+
+ def arch(self, index: int):
+ """Return the topology structure of the `index`-th architecture."""
+ if self.verbose:
+ print('Call the arch function with index={:}'.format(index))
+ assert 0 <= index < len(self.meta_archs), 'invalid index : {:} vs. {:}.'.format(index, len(self.meta_archs))
+ return copy.deepcopy(self.meta_archs[index])
+
+ def __len__(self):
+ return len(self.meta_archs)
+
+ def __repr__(self):
+ return ('{name}({num}/{total} architectures, file={filename})'.format(name=self.__class__.__name__, num=len(self.evaluated_indexes), total=len(self.meta_archs), filename=self.filename))
+
+ def random(self):
+ """Return a random index of all architectures."""
+ return random.randint(0, len(self.meta_archs)-1)
+
+ def query_index_by_arch(self, arch):
+ """ This function is used to query the index of an architecture in the search space.
+ In the topology search space, the input arch can be an architecture string such as '|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|';
+ or an instance that has the 'tostr' function that can generate the architecture string;
+ or it is directly an architecture index, in this case, we will check whether it is valid or not.
+ This function will return the index.
+ If return -1, it means this architecture is not in the search space.
+ Otherwise, it will return an int in [0, the-number-of-candidates-in-the-search-space).
+ """
+ if self.verbose:
+ print('Call query_index_by_arch with arch={:}'.format(arch))
+ if isinstance(arch, int):
+ if 0 <= arch < len(self):
+ return arch
+ else:
+ raise ValueError('Invalid architecture index {:} vs [{:}, {:}].'.format(arch, 0, len(self)))
+ elif isinstance(arch, str):
+ if arch in self.archstr2index: arch_index = self.archstr2index[ arch ]
+ else : arch_index = -1
+ elif hasattr(arch, 'tostr'):
+ if arch.tostr() in self.archstr2index: arch_index = self.archstr2index[ arch.tostr() ]
+ else : arch_index = -1
+ else: arch_index = -1
+ return arch_index
+
+ @abc.abstractmethod
+ def reload(self, archive_root: Text = None, index: int = None):
+ """Overwrite all information of the 'index'-th architecture in the search space, where the data will be loaded from 'archive_root'.
+ If index is None, overwrite all ckps.
+ """
+
+ def clear_params(self, index: int, hp: Optional[Text]=None):
+ """Remove the architecture's weights to save memory.
+ :arg
+ index: the index of the target architecture
+ hp: a flag to controll how to clear the parameters.
+ -- None: clear all the weights in '01'/'12'/'90', which indicates the number of training epochs.
+ -- '01' or '12' or '90': clear all the weights in arch2infos_dict[index][hp].
+ """
+ if self.verbose:
+ print('Call clear_params with index={:} and hp={:}'.format(index, hp))
+ if hp is None:
+ for key, result in self.arch2infos_dict[index].items():
+ result.clear_params()
+ else:
+ if str(hp) not in self.arch2infos_dict[index]:
+ raise ValueError('The {:}-th architecture only has hyper-parameters of {:} instead of {:}.'.format(index, list(self.arch2infos_dict[index].keys()), hp))
+ self.arch2infos_dict[index][str(hp)].clear_params()
+
+ @abc.abstractmethod
+ def query_info_str_by_arch(self, arch, hp: Text='12'):
+ """This function is used to query the information of a specific architecture."""
+
+ def _query_info_str_by_arch(self, arch, hp: Text='12', print_information=None):
+ arch_index = self.query_index_by_arch(arch)
+ if arch_index in self.arch2infos_dict:
+ if hp not in self.arch2infos_dict[arch_index]:
+ raise ValueError('The {:}-th architecture only has hyper-parameters of {:} instead of {:}.'.format(index, list(self.arch2infos_dict[arch_index].keys()), hp))
+ info = self.arch2infos_dict[arch_index][hp]
+ strings = print_information(info, 'arch-index={:}'.format(arch_index))
+ return '\n'.join(strings)
+ else:
+ print ('Find this arch-index : {:}, but this arch is not evaluated.'.format(arch_index))
+ return None
+
+ def query_meta_info_by_index(self, arch_index, hp: Text = '12'):
+ """Return the ArchResults for the 'arch_index'-th architecture. This function is similar to query_by_index."""
+ if self.verbose:
+ print('Call query_meta_info_by_index with arch_index={:}, hp={:}'.format(arch_index, hp))
+ if arch_index in self.arch2infos_dict:
+ if hp not in self.arch2infos_dict[arch_index]:
+ raise ValueError('The {:}-th architecture only has hyper-parameters of {:} instead of {:}.'.format(arch_index, list(self.arch2infos_dict[arch_index].keys()), hp))
+ info = self.arch2infos_dict[arch_index][hp]
+ else:
+ raise ValueError('arch_index [{:}] does not in arch2infos'.format(arch_index))
+ return copy.deepcopy(info)
+
+ def query_by_index(self, arch_index: int, dataname: Union[None, Text] = None, hp: Text = '12'):
+ """ This 'query_by_index' function is used to query information with the training of 01 epochs, 12 epochs, 90 epochs, or 200 epochs.
+ ------
+ If hp=01, we train the model by 01 epochs (see config in configs/nas-benchmark/hyper-opts/01E.config)
+ If hp=12, we train the model by 01 epochs (see config in configs/nas-benchmark/hyper-opts/12E.config)
+ If hp=90, we train the model by 01 epochs (see config in configs/nas-benchmark/hyper-opts/90E.config)
+ If hp=200, we train the model by 01 epochs (see config in configs/nas-benchmark/hyper-opts/200E.config)
+ ------
+ If dataname is None, return the ArchResults
+ else, return a dict with all trials on that dataset (the key is the seed)
+ Options are 'cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'.
+ -- cifar10-valid : training the model on the CIFAR-10 training set.
+ -- cifar10 : training the model on the CIFAR-10 training + validation set.
+ -- cifar100 : training the model on the CIFAR-100 training set.
+ -- ImageNet16-120 : training the model on the ImageNet16-120 training set.
+ """
+ if self.verbose:
+ print('Call query_by_index with arch_index={:}, dataname={:}, hp={:}'.format(arch_index, dataname, hp))
+ info = self.query_meta_info_by_index(arch_index, hp)
+ if dataname is None: return info
+ else:
+ if dataname not in info.get_dataset_names():
+ raise ValueError('invalid dataset-name : {:} vs. {:}'.format(dataname, info.get_dataset_names()))
+ return info.query(dataname)
+
+ def find_best(self, dataset, metric_on_set, FLOP_max=None, Param_max=None, hp: Text = '12'):
+ """Find the architecture with the highest accuracy based on some constraints."""
+ if self.verbose:
+ print('Call find_best with dataset={:}, metric_on_set={:}, hp={:} | with #FLOPs < {:} and #Params < {:}'.format(dataset, metric_on_set, hp, FLOP_max, Param_max))
+ dataset, metric_on_set = remap_dataset_set_names(dataset, metric_on_set, self.verbose)
+ best_index, highest_accuracy = -1, None
+ for i, arch_index in enumerate(self.evaluated_indexes):
+ arch_info = self.arch2infos_dict[arch_index][hp]
+ info = arch_info.get_compute_costs(dataset) # the information of costs
+ flop, param, latency = info['flops'], info['params'], info['latency']
+ if FLOP_max is not None and flop > FLOP_max : continue
+ if Param_max is not None and param > Param_max: continue
+ xinfo = arch_info.get_metrics(dataset, metric_on_set) # the information of loss and accuracy
+ loss, accuracy = xinfo['loss'], xinfo['accuracy']
+ if best_index == -1:
+ best_index, highest_accuracy = arch_index, accuracy
+ elif highest_accuracy < accuracy:
+ best_index, highest_accuracy = arch_index, accuracy
+ if self.verbose:
+ print(' the best architecture : [{:}] {:} with accuracy={:.3f}%'.format(best_index, self.arch(best_index), highest_accuracy))
+ return best_index, highest_accuracy
+
+ def get_net_param(self, index, dataset, seed: Optional[int], hp: Text = '12'):
+ """
+ This function is used to obtain the trained weights of the `index`-th architecture on `dataset` with the seed of `seed`
+ Args [seed]:
+ -- None : return a dict containing the trained weights of all trials, where each key is a seed and its corresponding value is the weights.
+ -- a interger : return the weights of a specific trial, whose seed is this interger.
+ Args [hp]:
+ -- 01 : train the model by 01 epochs
+ -- 12 : train the model by 12 epochs
+ -- 90 : train the model by 90 epochs
+ -- 200 : train the model by 200 epochs
+ """
+ if self.verbose:
+ print('Call the get_net_param function with index={:}, dataset={:}, seed={:}, hp={:}'.format(index, dataset, seed, hp))
+ info = self.query_meta_info_by_index(index, hp)
+ return info.get_net_param(dataset, seed)
+
+ def get_net_config(self, index: int, dataset: Text):
+ """
+ This function is used to obtain the configuration for the `index`-th architecture on `dataset`.
+ Args [dataset] (4 possible options):
+ -- cifar10-valid : training the model on the CIFAR-10 training set.
+ -- cifar10 : training the model on the CIFAR-10 training + validation set.
+ -- cifar100 : training the model on the CIFAR-100 training set.
+ -- ImageNet16-120 : training the model on the ImageNet16-120 training set.
+ This function will return a dict.
+ ========= Some examlpes for using this function:
+ config = api.get_net_config(128, 'cifar10')
+ """
+ if self.verbose:
+ print('Call the get_net_config function with index={:}, dataset={:}.'.format(index, dataset))
+ if index in self.arch2infos_dict:
+ info = self.arch2infos_dict[index]
+ else:
+ raise ValueError('The arch_index={:} is not in arch2infos_dict.'.format(arch_index))
+ info = next(iter(info.values()))
+ results = info.query(dataset, None)
+ results = next(iter(results.values()))
+ return results.get_config(None)
+
+ def get_cost_info(self, index: int, dataset: Text, hp: Text = '12') -> Dict[Text, float]:
+ """To obtain the cost metric for the `index`-th architecture on a dataset."""
+ if self.verbose:
+ print('Call the get_cost_info function with index={:}, dataset={:}, and hp={:}.'.format(index, dataset, hp))
+ info = self.query_meta_info_by_index(index, hp)
+ return info.get_compute_costs(dataset)
+
+ def get_latency(self, index: int, dataset: Text, hp: Text = '12') -> float:
+ """
+ To obtain the latency of the network (by default it will return the latency with the batch size of 256).
+ :param index: the index of the target architecture
+ :param dataset: the dataset name (cifar10-valid, cifar10, cifar100, ImageNet16-120)
+ :return: return a float value in seconds
+ """
+ if self.verbose:
+ print('Call the get_latency function with index={:}, dataset={:}, and hp={:}.'.format(index, dataset, hp))
+ cost_dict = self.get_cost_info(index, dataset, hp)
+ return cost_dict['latency']
+
+ @abc.abstractmethod
+ def show(self, index=-1):
+ """This function will print the information of a specific (or all) architecture(s)."""
+
+ def _show(self, index=-1, print_information=None) -> None:
+ """
+ This function will print the information of a specific (or all) architecture(s).
+
+ :param index: If the index < 0: it will loop for all architectures and print their information one by one.
+ else: it will print the information of the 'index'-th architecture.
+ :return: nothing
+ """
+ if index < 0: # show all architectures
+ print(self)
+ for i, idx in enumerate(self.evaluated_indexes):
+ print('\n' + '-' * 10 + ' The ({:5d}/{:5d}) {:06d}-th architecture! '.format(i, len(self.evaluated_indexes), idx) + '-'*10)
+ print('arch : {:}'.format(self.meta_archs[idx]))
+ for key, result in self.arch2infos_dict[index].items():
+ strings = print_information(result)
+ print('>' * 40 + ' {:03d} epochs '.format(result.get_total_epoch()) + '>' * 40)
+ print('\n'.join(strings))
+ print('<' * 40 + '------------' + '<' * 40)
+ else:
+ if 0 <= index < len(self.meta_archs):
+ if index not in self.evaluated_indexes: print('The {:}-th architecture has not been evaluated or not saved.'.format(index))
+ else:
+ arch_info = self.arch2infos_dict[index]
+ for key, result in self.arch2infos_dict[index].items():
+ strings = print_information(result)
+ print('>' * 40 + ' {:03d} epochs '.format(result.get_total_epoch()) + '>' * 40)
+ print('\n'.join(strings))
+ print('<' * 40 + '------------' + '<' * 40)
+ else:
+ print('This index ({:}) is out of range (0~{:}).'.format(index, len(self.meta_archs)))
+
+ def statistics(self, dataset: Text, hp: Union[Text, int]) -> Dict[int, int]:
+ """This function will count the number of total trials."""
+ if self.verbose:
+ print('Call the statistics function with dataset={:} and hp={:}.'.format(dataset, hp))
+ valid_datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']
+ if dataset not in valid_datasets:
+ raise ValueError('{:} not in {:}'.format(dataset, valid_datasets))
+ nums, hp = defaultdict(lambda: 0), str(hp)
+ for index in range(len(self)):
+ archInfo = self.arch2infos_dict[index][hp]
+ dataset_seed = archInfo.dataset_seed
+ if dataset not in dataset_seed:
+ nums[0] += 1
+ else:
+ nums[len(dataset_seed[dataset])] += 1
+ return dict(nums)
+
+
+class ArchResults(object):
+
+ def __init__(self, arch_index, arch_str):
+ self.arch_index = int(arch_index)
+ self.arch_str = copy.deepcopy(arch_str)
+ self.all_results = dict()
+ self.dataset_seed = dict()
+ self.clear_net_done = False
+
+ def get_compute_costs(self, dataset):
+ x_seeds = self.dataset_seed[dataset]
+ results = [self.all_results[ (dataset, seed) ] for seed in x_seeds]
+
+ flops = [result.flop for result in results]
+ params = [result.params for result in results]
+ latencies = [result.get_latency() for result in results]
+ latencies = [x for x in latencies if x > 0]
+ mean_latency = np.mean(latencies) if len(latencies) > 0 else None
+ time_infos = defaultdict(list)
+ for result in results:
+ time_info = result.get_times()
+ for key, value in time_info.items(): time_infos[key].append( value )
+
+ info = {'flops' : np.mean(flops),
+ 'params' : np.mean(params),
+ 'latency': mean_latency}
+ for key, value in time_infos.items():
+ if len(value) > 0 and value[0] is not None:
+ info[key] = np.mean(value)
+ else: info[key] = None
+ return info
+
+ def get_metrics(self, dataset, setname, iepoch=None, is_random=False):
+ """
+ This `get_metrics` function is used to obtain obtain the loss, accuracy, etc information on a specific dataset.
+ If not specify, each set refer to the proposed split in NAS-Bench-201 paper.
+ If some args return None or raise error, then it is not avaliable.
+ ========================================
+ Args [dataset] (4 possible options):
+ -- cifar10-valid : training the model on the CIFAR-10 training set.
+ -- cifar10 : training the model on the CIFAR-10 training + validation set.
+ -- cifar100 : training the model on the CIFAR-100 training set.
+ -- ImageNet16-120 : training the model on the ImageNet16-120 training set.
+ Args [setname] (each dataset has different setnames):
+ -- When dataset = cifar10-valid, you can use 'train', 'x-valid', 'ori-test'
+ ------ 'train' : the metric on the training set.
+ ------ 'x-valid' : the metric on the validation set.
+ ------ 'ori-test' : the metric on the test set.
+ -- When dataset = cifar10, you can use 'train', 'ori-test'.
+ ------ 'train' : the metric on the training + validation set.
+ ------ 'ori-test' : the metric on the test set.
+ -- When dataset = cifar100 or ImageNet16-120, you can use 'train', 'ori-test', 'x-valid', 'x-test'
+ ------ 'train' : the metric on the training set.
+ ------ 'x-valid' : the metric on the validation set.
+ ------ 'x-test' : the metric on the test set.
+ ------ 'ori-test' : the metric on the validation + test set.
+ Args [iepoch] (None or an integer in [0, the-number-of-total-training-epochs)
+ ------ None : return the metric after the last training epoch.
+ ------ an integer i : return the metric after the i-th training epoch.
+ Args [is_random]:
+ ------ True : return the metric of a randomly selected trial.
+ ------ False : return the averaged metric of all avaliable trials.
+ ------ an integer indicating the 'seed' value : return the metric of a specific trial (whose random seed is 'is_random').
+ """
+ x_seeds = self.dataset_seed[dataset]
+ results = [self.all_results[ (dataset, seed) ] for seed in x_seeds]
+ infos = defaultdict(list)
+ for result in results:
+ if setname == 'train':
+ info = result.get_train(iepoch)
+ else:
+ info = result.get_eval(setname, iepoch)
+ for key, value in info.items(): infos[key].append( value )
+ return_info = dict()
+ if isinstance(is_random, bool) and is_random: # randomly select one
+ index = random.randint(0, len(results)-1)
+ for key, value in infos.items(): return_info[key] = value[index]
+ elif isinstance(is_random, bool) and not is_random: # average
+ for key, value in infos.items():
+ if len(value) > 0 and value[0] is not None:
+ return_info[key] = np.mean(value)
+ else: return_info[key] = None
+ elif isinstance(is_random, int): # specify the seed
+ if is_random not in x_seeds: raise ValueError('can not find random seed ({:}) from {:}'.format(is_random, x_seeds))
+ index = x_seeds.index(is_random)
+ for key, value in infos.items(): return_info[key] = value[index]
+ else:
+ raise ValueError('invalid value for is_random: {:}'.format(is_random))
+ return return_info
+
+ def show(self, is_print=False):
+ return print_information(self, None, is_print)
+
+ def get_dataset_names(self):
+ return list(self.dataset_seed.keys())
+
+ def get_dataset_seeds(self, dataset):
+ return copy.deepcopy( self.dataset_seed[dataset] )
+
+ def get_net_param(self, dataset: Text, seed: Union[None, int] =None):
+ """
+ This function will return the trained network's weights on the 'dataset'.
+ :arg
+ dataset: one of 'cifar10-valid', 'cifar10', 'cifar100', and 'ImageNet16-120'.
+ seed: an integer indicates the seed value or None that indicates returing all trials.
+ """
+ if seed is None:
+ x_seeds = self.dataset_seed[dataset]
+ return {seed: self.all_results[(dataset, seed)].get_net_param() for seed in x_seeds}
+ else:
+ return self.all_results[(dataset, seed)].get_net_param()
+
+ def reset_latency(self, dataset: Text, seed: Union[None, Text], latency: float) -> None:
+ """This function is used to reset the latency in all corresponding ResultsCount(s)."""
+ if seed is None:
+ for seed in self.dataset_seed[dataset]:
+ self.all_results[(dataset, seed)].update_latency([latency])
+ else:
+ self.all_results[(dataset, seed)].update_latency([latency])
+
+ def reset_pseudo_train_times(self, dataset: Text, seed: Union[None, Text], estimated_per_epoch_time: float) -> None:
+ """This function is used to reset the train-times in all corresponding ResultsCount(s)."""
+ if seed is None:
+ for seed in self.dataset_seed[dataset]:
+ self.all_results[(dataset, seed)].reset_pseudo_train_times(estimated_per_epoch_time)
+ else:
+ self.all_results[(dataset, seed)].reset_pseudo_train_times(estimated_per_epoch_time)
+
+ def reset_pseudo_eval_times(self, dataset: Text, seed: Union[None, Text], eval_name: Text, estimated_per_epoch_time: float) -> None:
+ """This function is used to reset the eval-times in all corresponding ResultsCount(s)."""
+ if seed is None:
+ for seed in self.dataset_seed[dataset]:
+ self.all_results[(dataset, seed)].reset_pseudo_eval_times(eval_name, estimated_per_epoch_time)
+ else:
+ self.all_results[(dataset, seed)].reset_pseudo_eval_times(eval_name, estimated_per_epoch_time)
+
+ def get_latency(self, dataset: Text) -> float:
+ """Get the latency of a model on the target dataset. [Timestamp: 2020.03.09]"""
+ latencies = []
+ for seed in self.dataset_seed[dataset]:
+ latency = self.all_results[(dataset, seed)].get_latency()
+ if not isinstance(latency, float) or latency <= 0:
+ raise ValueError('invalid latency of {:} with seed={:} : {:}'.format(dataset, seed, latency))
+ latencies.append(latency)
+ return sum(latencies) / len(latencies)
+
+ def get_total_epoch(self, dataset=None):
+ """Return the total number of training epochs."""
+ if dataset is None:
+ epochss = []
+ for xdata, x_seeds in self.dataset_seed.items():
+ epochss += [self.all_results[(xdata, seed)].get_total_epoch() for seed in x_seeds]
+ elif isinstance(dataset, str):
+ x_seeds = self.dataset_seed[dataset]
+ epochss = [self.all_results[(dataset, seed)].get_total_epoch() for seed in x_seeds]
+ else:
+ raise ValueError('invalid dataset={:}'.format(dataset))
+ if len(set(epochss)) > 1: raise ValueError('Each trial mush have the same number of training epochs : {:}'.format(epochss))
+ return epochss[-1]
+
+ def query(self, dataset, seed=None):
+ """Return the ResultsCount object (containing all information of a single trial) for 'dataset' and 'seed'"""
+ if seed is None:
+ x_seeds = self.dataset_seed[dataset]
+ return {seed: self.all_results[(dataset, seed)] for seed in x_seeds}
+ else:
+ return self.all_results[(dataset, seed)]
+
+ def arch_idx_str(self):
+ return '{:06d}'.format(self.arch_index)
+
+ def update(self, dataset_name, seed, result):
+ if dataset_name not in self.dataset_seed:
+ self.dataset_seed[dataset_name] = []
+ assert seed not in self.dataset_seed[dataset_name], '{:}-th arch alreadly has this seed ({:}) on {:}'.format(self.arch_index, seed, dataset_name)
+ self.dataset_seed[ dataset_name ].append( seed )
+ self.dataset_seed[ dataset_name ] = sorted( self.dataset_seed[ dataset_name ] )
+ assert (dataset_name, seed) not in self.all_results
+ self.all_results[ (dataset_name, seed) ] = result
+ self.clear_net_done = False
+
+ def state_dict(self):
+ state_dict = dict()
+ for key, value in self.__dict__.items():
+ if key == 'all_results': # contain the class of ResultsCount
+ xvalue = dict()
+ assert isinstance(value, dict), 'invalid type of value for {:} : {:}'.format(key, type(value))
+ for _k, _v in value.items():
+ assert isinstance(_v, ResultsCount), 'invalid type of value for {:}/{:} : {:}'.format(key, _k, type(_v))
+ xvalue[_k] = _v.state_dict()
+ else:
+ xvalue = value
+ state_dict[key] = xvalue
+ return state_dict
+
+ def load_state_dict(self, state_dict):
+ new_state_dict = dict()
+ for key, value in state_dict.items():
+ if key == 'all_results': # to convert to the class of ResultsCount
+ xvalue = dict()
+ assert isinstance(value, dict), 'invalid type of value for {:} : {:}'.format(key, type(value))
+ for _k, _v in value.items():
+ xvalue[_k] = ResultsCount.create_from_state_dict(_v)
+ else: xvalue = value
+ new_state_dict[key] = xvalue
+ self.__dict__.update(new_state_dict)
+
+ @staticmethod
+ def create_from_state_dict(state_dict_or_file):
+ x = ArchResults(-1, -1)
+ if isinstance(state_dict_or_file, str): # a file path
+ state_dict = torch.load(state_dict_or_file, map_location='cpu')
+ elif isinstance(state_dict_or_file, dict):
+ state_dict = state_dict_or_file
+ else:
+ raise ValueError('invalid type of state_dict_or_file : {:}'.format(type(state_dict_or_file)))
+ x.load_state_dict(state_dict)
+ return x
+
+ # This function is used to clear the weights saved in each 'result'
+ # This can help reduce the memory footprint.
+ def clear_params(self):
+ for key, result in self.all_results.items():
+ del result.net_state_dict
+ result.net_state_dict = None
+ self.clear_net_done = True
+
+ def debug_test(self):
+ """This function is used for me to debug and test, which will call most methods."""
+ all_dataset = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']
+ for dataset in all_dataset:
+ print('---->>>> {:}'.format(dataset))
+ print('The latency on {:} is {:} s'.format(dataset, self.get_latency(dataset)))
+ for seed in self.dataset_seed[dataset]:
+ result = self.all_results[(dataset, seed)]
+ print(' ==>> result = {:}'.format(result))
+ print(' ==>> cost = {:}'.format(result.get_times()))
+
+ def __repr__(self):
+ return ('{name}(arch-index={index}, arch={arch}, {num} runs, clear={clear})'.format(name=self.__class__.__name__, index=self.arch_index, arch=self.arch_str, num=len(self.all_results), clear=self.clear_net_done))
+
+
+"""
+This class (ResultsCount) is used to save the information of one trial for a single architecture.
+I did not write much comment for this class, because it is the lowest-level class in NAS-Bench-201 API, which will be rarely called.
+If you have any question regarding this class, please open an issue or email me.
+"""
+class ResultsCount(object):
+
+ def __init__(self, name, state_dict, train_accs, train_losses, params, flop, arch_config, seed, epochs, latency):
+ self.name = name
+ self.net_state_dict = state_dict
+ self.train_acc1es = copy.deepcopy(train_accs)
+ self.train_acc5es = None
+ self.train_losses = copy.deepcopy(train_losses)
+ self.train_times = None
+ self.arch_config = copy.deepcopy(arch_config)
+ self.params = params
+ self.flop = flop
+ self.seed = seed
+ self.epochs = epochs
+ self.latency = latency
+ # evaluation results
+ self.reset_eval()
+
+ def update_train_info(self, train_acc1es, train_acc5es, train_losses, train_times) -> None:
+ self.train_acc1es = train_acc1es
+ self.train_acc5es = train_acc5es
+ self.train_losses = train_losses
+ self.train_times = train_times
+
+ def reset_pseudo_train_times(self, estimated_per_epoch_time: float) -> None:
+ """Assign the training times."""
+ train_times = OrderedDict()
+ for i in range(self.epochs):
+ train_times[i] = estimated_per_epoch_time
+ self.train_times = train_times
+
+ def reset_pseudo_eval_times(self, eval_name: Text, estimated_per_epoch_time: float) -> None:
+ """Assign the evaluation times."""
+ if eval_name not in self.eval_names: raise ValueError('invalid eval name : {:}'.format(eval_name))
+ for i in range(self.epochs):
+ self.eval_times['{:}@{:}'.format(eval_name,i)] = estimated_per_epoch_time
+
+ def reset_eval(self):
+ self.eval_names = []
+ self.eval_acc1es = {}
+ self.eval_times = {}
+ self.eval_losses = {}
+
+ def update_latency(self, latency):
+ self.latency = copy.deepcopy( latency )
+
+ def get_latency(self) -> float:
+ """Return the latency value in seconds. -1 represents not avaliable ; otherwise it should be a float value"""
+ if self.latency is None: return -1.0
+ else: return sum(self.latency) / len(self.latency)
+
+ def update_eval(self, accs, losses, times): # new version
+ data_names = set([x.split('@')[0] for x in accs.keys()])
+ for data_name in data_names:
+ assert data_name not in self.eval_names, '{:} has already been added into eval-names'.format(data_name)
+ self.eval_names.append( data_name )
+ for iepoch in range(self.epochs):
+ xkey = '{:}@{:}'.format(data_name, iepoch)
+ self.eval_acc1es[ xkey ] = accs[ xkey ]
+ self.eval_losses[ xkey ] = losses[ xkey ]
+ self.eval_times [ xkey ] = times[ xkey ]
+
+ def update_OLD_eval(self, name, accs, losses): # old version
+ assert name not in self.eval_names, '{:} has already added'.format(name)
+ self.eval_names.append( name )
+ for iepoch in range(self.epochs):
+ if iepoch in accs:
+ self.eval_acc1es['{:}@{:}'.format(name,iepoch)] = accs[iepoch]
+ self.eval_losses['{:}@{:}'.format(name,iepoch)] = losses[iepoch]
+
+ def __repr__(self):
+ num_eval = len(self.eval_names)
+ set_name = '[' + ', '.join(self.eval_names) + ']'
+ return ('{name}({xname}, arch={arch}, FLOP={flop:.2f}M, Param={param:.3f}MB, seed={seed}, {num_eval} eval-sets: {set_name})'.format(name=self.__class__.__name__, xname=self.name, arch=self.arch_config['arch_str'], flop=self.flop, param=self.params, seed=self.seed, num_eval=num_eval, set_name=set_name))
+
+ def get_total_epoch(self):
+ return copy.deepcopy(self.epochs)
+
+ def get_times(self):
+ """Obtain the information regarding both training and evaluation time."""
+ if self.train_times is not None and isinstance(self.train_times, dict):
+ train_times = list( self.train_times.values() )
+ time_info = {'T-train@epoch': np.mean(train_times), 'T-train@total': np.sum(train_times)}
+ else:
+ time_info = {'T-train@epoch': None, 'T-train@total': None }
+ for name in self.eval_names:
+ try:
+ xtimes = [self.eval_times['{:}@{:}'.format(name,i)] for i in range(self.epochs)]
+ time_info['T-{:}@epoch'.format(name)] = np.mean(xtimes)
+ time_info['T-{:}@total'.format(name)] = np.sum(xtimes)
+ except:
+ time_info['T-{:}@epoch'.format(name)] = None
+ time_info['T-{:}@total'.format(name)] = None
+ return time_info
+
+ def get_eval_set(self):
+ return self.eval_names
+
+ # get the training information
+ def get_train(self, iepoch=None):
+ if iepoch is None: iepoch = self.epochs-1
+ assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs)
+ if self.train_times is not None:
+ xtime = self.train_times[iepoch]
+ atime = sum([self.train_times[i] for i in range(iepoch+1)])
+ else: xtime, atime = None, None
+ return {'iepoch' : iepoch,
+ 'loss' : self.train_losses[iepoch],
+ 'accuracy': self.train_acc1es[iepoch],
+ 'cur_time': xtime,
+ 'all_time': atime}
+
+ def get_eval(self, name, iepoch=None):
+ """Get the evaluation information ; there could be multiple evaluation sets (identified by the 'name' argument)."""
+ if iepoch is None: iepoch = self.epochs-1
+ assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs)
+ if isinstance(self.eval_times,dict) and len(self.eval_times) > 0:
+ xtime = self.eval_times['{:}@{:}'.format(name,iepoch)]
+ atime = sum([self.eval_times['{:}@{:}'.format(name,i)] for i in range(iepoch+1)])
+ else: xtime, atime = None, None
+ return {'iepoch' : iepoch,
+ 'loss' : self.eval_losses['{:}@{:}'.format(name,iepoch)],
+ 'accuracy': self.eval_acc1es['{:}@{:}'.format(name,iepoch)],
+ 'cur_time': xtime,
+ 'all_time': atime}
+
+ def get_net_param(self, clone=False):
+ if clone: return copy.deepcopy(self.net_state_dict)
+ else: return self.net_state_dict
+
+ def get_config(self, str2structure):
+ """This function is used to obtain the config dict for this architecture."""
+ if str2structure is None:
+ # In this case, this is NAS-Bench-301
+ if 'name' in self.arch_config and self.arch_config['name'] == 'infer.shape.tiny':
+ return {'name': 'infer.shape.tiny', 'channels': self.arch_config['channels'],
+ 'genotype': self.arch_config['genotype'], 'num_classes': self.arch_config['class_num']}
+ # In this case, this is NAS-Bench-201
+ else:
+ return {'name': 'infer.tiny', 'C': self.arch_config['channel'],
+ 'N' : self.arch_config['num_cells'],
+ 'arch_str': self.arch_config['arch_str'], 'num_classes': self.arch_config['class_num']}
+ else:
+ # In this case, this is NAS-Bench-301
+ if 'name' in self.arch_config and self.arch_config['name'] == 'infer.shape.tiny':
+ return {'name': 'infer.shape.tiny', 'channels': self.arch_config['channels'],
+ 'genotype': str2structure(self.arch_config['genotype']), 'num_classes': self.arch_config['class_num']}
+ # In this case, this is NAS-Bench-201
+ else:
+ return {'name': 'infer.tiny', 'C': self.arch_config['channel'],
+ 'N' : self.arch_config['num_cells'],
+ 'genotype': str2structure(self.arch_config['arch_str']), 'num_classes': self.arch_config['class_num']}
+
+ def state_dict(self):
+ _state_dict = {key: value for key, value in self.__dict__.items()}
+ return _state_dict
+
+ def load_state_dict(self, state_dict):
+ self.__dict__.update(state_dict)
+
+ @staticmethod
+ def create_from_state_dict(state_dict):
+ x = ResultsCount(None, None, None, None, None, None, None, None, None, None)
+ x.load_state_dict(state_dict)
+ return x
diff --git a/scripts-search/X-X/train-shapes-v2.sh b/scripts-search/X-X/train-shapes-v2.sh
index 25aa72a..55d049e 100644
--- a/scripts-search/X-X/train-shapes-v2.sh
+++ b/scripts-search/X-X/train-shapes-v2.sh
@@ -4,7 +4,9 @@
#####################################################
# SLURM_PROCID=0 SLURM_NTASKS=6 bash ./scripts-search/X-X/train-shapes-v2.sh 12 777
#
-# SLURM_PROCID=0 SLURM_NTASKS=2 bash ./scripts-search/X-X/train-shapes.sh 31000-32767 90 777
+# SLURM_PROCID=0 SLURM_NTASKS=4 bash ./scripts-search/X-X/train-shapes.sh 30000-32767 90 777
+# SLURM_PROCID=0 SLURM_NTASKS=4 bash ./scripts-search/X-X/train-shapes.sh 00000-09999 90 777
+#
echo script name: $0
echo $# arguments
if [ "$#" -ne 2 ] ;then
@@ -21,7 +23,8 @@ fi
#srange=01000-03999,04050-05000,06000-09000,11000-14500,15000-18500,20000-23500,25000-27500,29000-30000
#srange=00000-00999,04000-04049,05001-05999,09001-10999,14501-14999,18501-19999,23501-24999,27501-28999,30001-32767
-srange=00000-00999,04000-04049,05001-05999,09001-10999,14501-14999,18501-19999,23501-24999,27501-28999,30001-30999
+#srange=00000-09999
+srange=10000-29999
opt=$1
all_seeds=$2
cpus=4
diff --git a/scripts-search/X-X/train-shapes.sh b/scripts-search/X-X/train-shapes.sh
index 67fde50..5dd9cbf 100644
--- a/scripts-search/X-X/train-shapes.sh
+++ b/scripts-search/X-X/train-shapes.sh
@@ -5,14 +5,17 @@
# [mars6] CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/X-X/train-shapes.sh 00000-05000 12 777
# [mars6] bash ./scripts-search/X-X/train-shapes.sh 05001-10000 12 777
# [mars20] bash ./scripts-search/X-X/train-shapes.sh 10001-14500 12 777
-# [mars20] bash ./scripts-search/X-X/train-shapes.sh 14501-19500 12 777
+# [mars20] bash ./scripts-search/X-X/train-shapes.sh 14501-18000 12 777
+# [saturn4] bash ./scripts-search/X-X/train-shapes.sh 18001-19500 12 777
# [saturn4] bash ./scripts-search/X-X/train-shapes.sh 19501-23500 12 777
# [saturn4] bash ./scripts-search/X-X/train-shapes.sh 23501-27500 12 777
# [saturn4] bash ./scripts-search/X-X/train-shapes.sh 27501-30000 12 777
-# [saturn4] bash ./scripts-search/X-X/train-shapes.sh 30001-32767 12 777
+# [x] bash ./scripts-search/X-X/train-shapes.sh 30001-32767 12 777
#
# CUDA_VISIBLE_DEVICES=2 bash ./scripts-search/X-X/train-shapes.sh 01000-03999,04050-05000,06000-09000,11000-14500,15000-18500,20000-23500,25000-27500,29000-30000 12 777
# SLURM_PROCID=1 SLURM_NTASKS=5 bash ./scripts-search/X-X/train-shapes.sh 01000-03999,04050-05000,06000-09000,11000-14500,15000-18500,20000-23500,25000-27500,29000-30000 90 777
+# [GCP] bash ./scripts-search/X-X/train-shapes.sh 00000-09999 90 777
+# [UTS] bash ./scripts-search/X-X/train-shapes.sh 30000-32767 90 777
echo script name: $0
echo $# arguments
if [ "$#" -ne 3 ] ;then
@@ -43,4 +46,4 @@ OMP_NUM_THREADS=${cpus} python exps/NAS-Bench-201/xshapes.py \
$TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python/ImageNet16 \
--workers ${cpus} \
- --seeds ${all_seeds}
\ No newline at end of file
+ --seeds ${all_seeds}