update baseline NAS algos
This commit is contained in:
		
							
								
								
									
										177
									
								
								exps/algos/BOHB.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										177
									
								
								exps/algos/BOHB.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,177 @@ | ||||
| ################################################## | ||||
| # required to install hpbandster ################# | ||||
| ################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np, collections | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from torch.distributions import Categorical | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from aa_nas_api   import AANASBenchAPI | ||||
| from models       import CellStructure, get_search_spaces | ||||
| from R_EA import train_and_eval | ||||
| # BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018 | ||||
| import ConfigSpace | ||||
| from hpbandster.optimizers.bohb import BOHB | ||||
| import hpbandster.core.nameserver as hpns | ||||
| from hpbandster.core.worker import Worker | ||||
|  | ||||
|  | ||||
| def get_configuration_space(max_nodes, search_space): | ||||
|   cs = ConfigSpace.ConfigurationSpace() | ||||
|   #edge2index   = {} | ||||
|   for i in range(1, max_nodes): | ||||
|     for j in range(i): | ||||
|       node_str = '{:}<-{:}'.format(i, j) | ||||
|       cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter(node_str, search_space)) | ||||
|   return cs | ||||
|  | ||||
|  | ||||
| def config2structure_func(max_nodes): | ||||
|   def config2structure(config): | ||||
|     genotypes = [] | ||||
|     for i in range(1, max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op_name = config[node_str] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return CellStructure( genotypes ) | ||||
|   return config2structure | ||||
|  | ||||
|  | ||||
| class MyWorker(Worker): | ||||
|  | ||||
|   def __init__(self, *args, sleep_interval=0, convert_func=None, nas_bench=None, **kwargs): | ||||
|     super().__init__(*args, **kwargs) | ||||
|     self.sleep_interval = sleep_interval | ||||
|     self.convert_func   = convert_func | ||||
|     self.nas_bench      = nas_bench | ||||
|     self.test_time      = 0 | ||||
|  | ||||
|   def compute(self, config, budget, **kwargs): | ||||
|     structure = self.convert_func( config ) | ||||
|     reward    = train_and_eval(structure, self.nas_bench, None) | ||||
|     self.test_time += 1 | ||||
|     return ({ | ||||
|             'loss': float(100-reward), | ||||
|             'info': None}) | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.benchmark = False | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( xargs.workers ) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' | ||||
|   train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|   split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
|   cifar_split = load_config(split_Fpath, None, None) | ||||
|   train_split, valid_split = cifar_split.train, cifar_split.valid | ||||
|   logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   config_path = 'configs/nas-benchmark/algos/R-EA.config' | ||||
|   config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) | ||||
|   # To split data | ||||
|   train_data_v2 = deepcopy(train_data) | ||||
|   train_data_v2.transform = valid_data.transform | ||||
|   valid_data    = train_data_v2 | ||||
|   search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split) | ||||
|   # data loader | ||||
|   train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True) | ||||
|   valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) | ||||
|   logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|   extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader} | ||||
|    | ||||
|  | ||||
|   # nas dataset load | ||||
|   assert xargs.arch_nas_dataset is not None and os.path.isfile(xargs.arch_nas_dataset) | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   cs = get_configuration_space(xargs.max_nodes, search_space) | ||||
|  | ||||
|   config2structure = config2structure_func(xargs.max_nodes) | ||||
|   hb_run_id = '0' | ||||
|  | ||||
|   NS = hpns.NameServer(run_id=hb_run_id, host='localhost', port=0) | ||||
|   ns_host, ns_port = NS.start() | ||||
|   num_workers = 1 | ||||
|  | ||||
|   nas_bench = AANASBenchAPI(xargs.arch_nas_dataset) | ||||
|   logger.log('{:} Create AA-NAS-BENCH-API DONE'.format(time_string())) | ||||
|   workers = [] | ||||
|   for i in range(num_workers): | ||||
|     w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, nas_bench=nas_bench, run_id=hb_run_id, id=i) | ||||
|     w.run(background=True) | ||||
|     workers.append(w) | ||||
|  | ||||
|   bohb = BOHB(configspace=cs, | ||||
|             run_id=hb_run_id, | ||||
|             eta=3, min_budget=3, max_budget=108, | ||||
|             nameserver=ns_host, | ||||
|             nameserver_port=ns_port, | ||||
|             num_samples=xargs.num_samples, | ||||
|             random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor, | ||||
|             ping_interval=10, min_bandwidth=xargs.min_bandwidth) | ||||
|   #          optimization_strategy=xargs.strategy, num_samples=xargs.num_samples, | ||||
|    | ||||
|   results = bohb.run(xargs.n_iters, min_n_workers=num_workers) | ||||
|  | ||||
|   bohb.shutdown(shutdown_workers=True) | ||||
|   NS.shutdown() | ||||
|  | ||||
|   id2config = results.get_id2config_mapping() | ||||
|   incumbent = results.get_incumbent_id() | ||||
|  | ||||
|   logger.log('Best found configuration: {:}'.format(id2config[incumbent]['config'])) | ||||
|   best_arch = config2structure( id2config[incumbent]['config'] ) | ||||
|  | ||||
|   if nas_bench is not None: | ||||
|     info = nas_bench.query_by_arch( best_arch ) | ||||
|     if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch)) | ||||
|     else           : logger.log('{:}'.format(info)) | ||||
|   logger.log('-'*100) | ||||
|  | ||||
|   logger.log('workers : {:}'.format(workers[0].test_time)) | ||||
|  | ||||
|   logger.close() | ||||
|    | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Regularized Evolution Algorithm") | ||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   # channels and number-of-cells | ||||
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | ||||
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | ||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   # BOHB | ||||
|   parser.add_argument('--strategy', default="sampling", type=str, nargs='?', help='optimization strategy for the acquisition function') | ||||
|   parser.add_argument('--min_bandwidth', default=.3, type=float, nargs='?', help='minimum bandwidth for KDE') | ||||
|   parser.add_argument('--num_samples',      default=64, type=int, nargs='?', help='number of samples for the acquisition function') | ||||
|   parser.add_argument('--random_fraction',  default=.33, type=float, nargs='?', help='fraction of random configurations') | ||||
|   parser.add_argument('--bandwidth_factor', default=3, type=int, nargs='?', help='factor multiplied to the bandwidth') | ||||
|   parser.add_argument('--n_iters', default=100, type=int, nargs='?', help='number of iterations for optimization method') | ||||
|   # log | ||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).') | ||||
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | ||||
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||
|   main(args) | ||||
							
								
								
									
										95
									
								
								exps/algos/RANDOM.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										95
									
								
								exps/algos/RANDOM.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,95 @@ | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np, collections | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from models       import get_search_spaces | ||||
| from aa_nas_api   import AANASBenchAPI | ||||
| from R_EA         import train_and_eval, random_architecture_func | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.benchmark = False | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( xargs.workers ) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' | ||||
|   train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|   split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
|   cifar_split = load_config(split_Fpath, None, None) | ||||
|   train_split, valid_split = cifar_split.train, cifar_split.valid | ||||
|   logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   config_path = 'configs/nas-benchmark/algos/R-EA.config' | ||||
|   config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) | ||||
|   # To split data | ||||
|   train_data_v2 = deepcopy(train_data) | ||||
|   train_data_v2.transform = valid_data.transform | ||||
|   valid_data    = train_data_v2 | ||||
|   search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split) | ||||
|   # data loader | ||||
|   train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True) | ||||
|   valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) | ||||
|   logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|   extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader} | ||||
|  | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   random_arch = random_architecture_func(xargs.max_nodes, search_space) | ||||
|   #x =random_arch() ; y = mutate_arch(x) | ||||
|   if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): | ||||
|     logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) | ||||
|     nas_bench = None | ||||
|   else: | ||||
|     logger.log('{:} build NAS-Benchmark-API from {:}'.format(time_string(), xargs.arch_nas_dataset)) | ||||
|     nas_bench = AANASBenchAPI(xargs.arch_nas_dataset) | ||||
|   logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench)) | ||||
|   best_arch, best_acc = None, -1 | ||||
|   for idx in range(xargs.random_num): | ||||
|     arch = random_arch() | ||||
|     accuracy = train_and_eval(arch, nas_bench, extra_info) | ||||
|     if best_arch is None or best_acc < accuracy: | ||||
|       best_acc, best_arch = accuracy, arch | ||||
|     logger.log('[{:03d}/{:03d}] : {:} : accuracy = {:.2f}%'.format(idx, xargs.random_num, arch, accuracy)) | ||||
|   logger.log('{:} best arch is {:}, accuracy = {:.2f}%'.format(time_string(), best_arch, best_acc)) | ||||
|    | ||||
|   if nas_bench is not None: | ||||
|     info = nas_bench.query_by_arch( best_arch ) | ||||
|     if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch)) | ||||
|     else           : logger.log('{:}'.format(info)) | ||||
|   logger.log('-'*100) | ||||
|  | ||||
|   logger.close() | ||||
|    | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Regularized Evolution Algorithm") | ||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   # channels and number-of-cells | ||||
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | ||||
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | ||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   parser.add_argument('--random_num',         type=int,   help='The number of random selected architectures.') | ||||
|   # log | ||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).') | ||||
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | ||||
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||
|   main(args) | ||||
							
								
								
									
										230
									
								
								exps/algos/R_EA.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										230
									
								
								exps/algos/R_EA.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,230 @@ | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np, collections | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from aa_nas_api   import AANASBenchAPI | ||||
| from models       import CellStructure, get_search_spaces | ||||
|  | ||||
|  | ||||
| # Regularized Evolution for Image Classifier Architecture Search | ||||
| class Model(object): | ||||
|  | ||||
|   def __init__(self): | ||||
|     self.arch = None | ||||
|     self.accuracy = None | ||||
|      | ||||
|   def __str__(self): | ||||
|     """Prints a readable version of this bitstring.""" | ||||
|     return '{:}'.format(self.arch) | ||||
|    | ||||
|  | ||||
| def valid_func(xloader, network, criterion): | ||||
|   data_time, batch_time = AverageMeter(), AverageMeter() | ||||
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||
|   network.train() | ||||
|   end = time.time() | ||||
|   with torch.no_grad(): | ||||
|     for step, (arch_inputs, arch_targets) in enumerate(xloader): | ||||
|       arch_targets = arch_targets.cuda(non_blocking=True) | ||||
|       # measure data loading time | ||||
|       data_time.update(time.time() - end) | ||||
|       # prediction | ||||
|       _, logits = network(arch_inputs) | ||||
|       arch_loss = criterion(logits, arch_targets) | ||||
|       # record | ||||
|       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) | ||||
|       arch_losses.update(arch_loss.item(),  arch_inputs.size(0)) | ||||
|       arch_top1.update  (arch_prec1.item(), arch_inputs.size(0)) | ||||
|       arch_top5.update  (arch_prec5.item(), arch_inputs.size(0)) | ||||
|       # measure elapsed time | ||||
|       batch_time.update(time.time() - end) | ||||
|       end = time.time() | ||||
|   return arch_losses.avg, arch_top1.avg, arch_top5.avg | ||||
|  | ||||
|  | ||||
| def train_and_eval(arch, nas_bench, extra_info): | ||||
|   if nas_bench is not None: | ||||
|     arch_index = nas_bench.query_index_by_arch( arch ) | ||||
|     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch) | ||||
|     info = nas_bench.arch2infos[ arch_index ] | ||||
|     _, valid_acc = info.get_metrics('cifar10-valid', 'x-valid' , 25) # use the validation accuracy after 25 training epochs | ||||
|   else: | ||||
|     # train a model from scratch. | ||||
|     raise ValueError('NOT IMPLEMENT YET') | ||||
|   return valid_acc | ||||
|  | ||||
|  | ||||
| def random_architecture_func(max_nodes, op_names): | ||||
|   # return a random architecture | ||||
|   def random_architecture(): | ||||
|     genotypes = [] | ||||
|     for i in range(1, max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op_name  = random.choice( op_names ) | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return CellStructure( genotypes ) | ||||
|   return random_architecture | ||||
|  | ||||
|  | ||||
| def mutate_arch_func(op_names): | ||||
|   """Computes the architecture for a child of the given parent architecture. | ||||
|   The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another. | ||||
|   """ | ||||
|   def mutate_arch_func(parent_arch): | ||||
|     child_arch = deepcopy( parent_arch ) | ||||
|     node_id = random.randint(0, len(child_arch.nodes)-1) | ||||
|     node_info = list( child_arch.nodes[node_id] ) | ||||
|     snode_id = random.randint(0, len(node_info)-1) | ||||
|     xop = random.choice( op_names ) | ||||
|     while xop == node_info[snode_id][0]: | ||||
|       xop = random.choice( op_names ) | ||||
|     node_info[snode_id] = (xop, node_info[snode_id][1]) | ||||
|     child_arch.nodes[node_id] = tuple( node_info ) | ||||
|     return child_arch | ||||
|   return mutate_arch_func | ||||
|  | ||||
|  | ||||
| def regularized_evolution(cycles, population_size, sample_size, random_arch, mutate_arch, nas_bench, extra_info): | ||||
|   """Algorithm for regularized evolution (i.e. aging evolution). | ||||
|    | ||||
|   Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image | ||||
|   Classifier Architecture Search". | ||||
|    | ||||
|   Args: | ||||
|     cycles: the number of cycles the algorithm should run for. | ||||
|     population_size: the number of individuals to keep in the population. | ||||
|     sample_size: the number of individuals that should participate in each tournament. | ||||
|  | ||||
|   Returns: | ||||
|     history: a list of `Model` instances, representing all the models computed | ||||
|         during the evolution experiment. | ||||
|   """ | ||||
|   population = collections.deque() | ||||
|   history = []  # Not used by the algorithm, only used to report results. | ||||
|  | ||||
|   # Initialize the population with random models. | ||||
|   while len(population) < population_size: | ||||
|     model = Model() | ||||
|     model.arch = random_arch() | ||||
|     model.accuracy = train_and_eval(model.arch, nas_bench, extra_info) | ||||
|     population.append(model) | ||||
|     history.append(model) | ||||
|  | ||||
|   # Carry out evolution in cycles. Each cycle produces a model and removes | ||||
|   # another. | ||||
|   while len(history) < cycles: | ||||
|     # Sample randomly chosen models from the current population. | ||||
|     sample = [] | ||||
|     while len(sample) < sample_size: | ||||
|       # Inefficient, but written this way for clarity. In the case of neural | ||||
|       # nets, the efficiency of this line is irrelevant because training neural | ||||
|       # nets is the rate-determining step. | ||||
|       candidate = random.choice(list(population)) | ||||
|       sample.append(candidate) | ||||
|  | ||||
|     # The parent is the best model in the sample. | ||||
|     parent = max(sample, key=lambda i: i.accuracy) | ||||
|  | ||||
|     # Create the child model and store it. | ||||
|     child = Model() | ||||
|     child.arch = mutate_arch(parent.arch) | ||||
|     child.accuracy = train_and_eval(child.arch, nas_bench, extra_info) | ||||
|     population.append(child) | ||||
|     history.append(child) | ||||
|  | ||||
|     # Remove the oldest model. | ||||
|     population.popleft() | ||||
|   return history | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.benchmark = False | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( xargs.workers ) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' | ||||
|   train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|   split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
|   cifar_split = load_config(split_Fpath, None, None) | ||||
|   train_split, valid_split = cifar_split.train, cifar_split.valid | ||||
|   logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   config_path = 'configs/nas-benchmark/algos/R-EA.config' | ||||
|   config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) | ||||
|   # To split data | ||||
|   train_data_v2 = deepcopy(train_data) | ||||
|   train_data_v2.transform = valid_data.transform | ||||
|   valid_data    = train_data_v2 | ||||
|   search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split) | ||||
|   # data loader | ||||
|   train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True) | ||||
|   valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) | ||||
|   logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|   extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader} | ||||
|  | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   random_arch = random_architecture_func(xargs.max_nodes, search_space) | ||||
|   mutate_arch = mutate_arch_func(search_space) | ||||
|   #x =random_arch() ; y = mutate_arch(x) | ||||
|   if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): | ||||
|     logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) | ||||
|     nas_bench = None | ||||
|   else: | ||||
|     logger.log('{:} build NAS-Benchmark-API from {:}'.format(time_string(), xargs.arch_nas_dataset)) | ||||
|     nas_bench = AANASBenchAPI(xargs.arch_nas_dataset) | ||||
|   logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench)) | ||||
|   history = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, random_arch, mutate_arch, nas_bench if args.ea_fast_by_api else None, extra_info) | ||||
|   logger.log('{:} regularized_evolution finish with history of {:} arch.'.format(time_string(), len(history))) | ||||
|   best_arch = max(history, key=lambda i: i.accuracy) | ||||
|   best_arch = best_arch.arch | ||||
|   logger.log('{:} best arch is {:}'.format(time_string(), best_arch)) | ||||
|    | ||||
|   if nas_bench is not None: | ||||
|     info = nas_bench.query_by_arch( best_arch ) | ||||
|     if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch)) | ||||
|     else           : logger.log('{:}'.format(info)) | ||||
|   logger.log('-'*100) | ||||
|  | ||||
|   logger.close() | ||||
|    | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Regularized Evolution Algorithm") | ||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   # channels and number-of-cells | ||||
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | ||||
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | ||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   parser.add_argument('--ea_cycles',          type=int,   help='The number of cycles in EA.') | ||||
|   parser.add_argument('--ea_population',      type=int,   help='The population size in EA.') | ||||
|   parser.add_argument('--ea_sample_size',     type=int,   help='The sample size in EA.') | ||||
|   parser.add_argument('--ea_fast_by_api',     type=int,   help='Use our API to speed up the experiments or not.') | ||||
|   # log | ||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).') | ||||
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | ||||
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||
|   args.ea_fast_by_api = args.ea_fast_by_api > 0 | ||||
|   main(args) | ||||
							
								
								
									
										187
									
								
								exps/algos/reinforce.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										187
									
								
								exps/algos/reinforce.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,187 @@ | ||||
| ################################################## | ||||
| # modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py | ||||
| ################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np, collections | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from torch.distributions import Categorical | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from aa_nas_api   import AANASBenchAPI | ||||
| from models       import CellStructure, get_search_spaces | ||||
| from R_EA import train_and_eval | ||||
|  | ||||
|  | ||||
| class Policy(nn.Module): | ||||
|  | ||||
|   def __init__(self, max_nodes, search_space): | ||||
|     super(Policy, self).__init__() | ||||
|     self.max_nodes    = max_nodes | ||||
|     self.search_space = deepcopy(search_space) | ||||
|     self.edge2index   = {} | ||||
|     for i in range(1, max_nodes): | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         self.edge2index[ node_str ] = len(self.edge2index) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(len(self.edge2index), len(search_space)) ) | ||||
|  | ||||
|   def generate_arch(self, actions): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op_name  = self.search_space[ actions[ self.edge2index[ node_str ] ] ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return CellStructure( genotypes ) | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.search_space[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return CellStructure( genotypes ) | ||||
|      | ||||
|   def forward(self): | ||||
|     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     return alphas | ||||
|  | ||||
|  | ||||
| class ExponentialMovingAverage(object): | ||||
|   """Class that maintains an exponential moving average.""" | ||||
|  | ||||
|   def __init__(self, momentum): | ||||
|     self._numerator   = 0 | ||||
|     self._denominator = 0 | ||||
|     self._momentum    = momentum | ||||
|  | ||||
|   def update(self, value): | ||||
|     self._numerator = self._momentum * self._numerator + (1 - self._momentum) * value | ||||
|     self._denominator = self._momentum * self._denominator + (1 - self._momentum) | ||||
|  | ||||
|   def value(self): | ||||
|     """Return the current value of the moving average""" | ||||
|     return self._numerator / self._denominator | ||||
|  | ||||
|  | ||||
| def select_action(policy): | ||||
|   probs = policy() | ||||
|   m = Categorical(probs) | ||||
|   action = m.sample() | ||||
|   #policy.saved_log_probs.append(m.log_prob(action)) | ||||
|   return m.log_prob(action), action.cpu().tolist() | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.benchmark = False | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads( xargs.workers ) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' | ||||
|   train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) | ||||
|   split_Fpath = 'configs/nas-benchmark/cifar-split.txt' | ||||
|   cifar_split = load_config(split_Fpath, None, None) | ||||
|   train_split, valid_split = cifar_split.train, cifar_split.valid | ||||
|   logger.log('Load split file from {:}'.format(split_Fpath)) | ||||
|   config_path = 'configs/nas-benchmark/algos/R-EA.config' | ||||
|   config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) | ||||
|   # To split data | ||||
|   train_data_v2 = deepcopy(train_data) | ||||
|   train_data_v2.transform = valid_data.transform | ||||
|   valid_data    = train_data_v2 | ||||
|   search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split) | ||||
|   # data loader | ||||
|   train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True) | ||||
|   valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) | ||||
|   logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) | ||||
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) | ||||
|   extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader} | ||||
|    | ||||
|   search_space = get_search_spaces('cell', xargs.search_space_name) | ||||
|   policy    = Policy(xargs.max_nodes, search_space) | ||||
|   optimizer = torch.optim.Adam(policy.parameters(), lr=xargs.learning_rate) | ||||
|   eps       = np.finfo(np.float32).eps.item() | ||||
|   baseline  = ExponentialMovingAverage(xargs.EMA_momentum) | ||||
|   logger.log('policy    : {:}'.format(policy)) | ||||
|   logger.log('optimizer : {:}'.format(optimizer)) | ||||
|   logger.log('eps       : {:}'.format(eps)) | ||||
|  | ||||
|   # nas dataset load | ||||
|   if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): | ||||
|     logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) | ||||
|     nas_bench = None | ||||
|   else: | ||||
|     logger.log('{:} build NAS-Benchmark-API from {:}'.format(time_string(), xargs.arch_nas_dataset)) | ||||
|     nas_bench = AANASBenchAPI(xargs.arch_nas_dataset) | ||||
|   logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench)) | ||||
|  | ||||
|   # REINFORCE | ||||
|   # attempts = 0 | ||||
|   for istep in range(xargs.RL_steps): | ||||
|     log_prob, action = select_action( policy ) | ||||
|     arch   = policy.generate_arch( action ) | ||||
|     reward = train_and_eval(arch, nas_bench, extra_info) | ||||
|  | ||||
|     baseline.update(reward) | ||||
|     # calculate loss | ||||
|     policy_loss = ( -log_prob * (reward - baseline.value()) ).sum() | ||||
|     optimizer.zero_grad() | ||||
|     policy_loss.backward() | ||||
|     optimizer.step() | ||||
|  | ||||
|     logger.log('step [{:3d}/{:3d}] : average-reward={:.3f} : policy_loss={:.4f} : {:}'.format(istep, xargs.RL_steps, baseline.value(), policy_loss.item(), policy.genotype())) | ||||
|     #logger.log('----> {:}'.format(policy.arch_parameters)) | ||||
|     logger.log('') | ||||
|  | ||||
|   best_arch = policy.genotype() | ||||
|  | ||||
|   if nas_bench is not None: | ||||
|     info = nas_bench.query_by_arch( best_arch ) | ||||
|     if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch)) | ||||
|     else           : logger.log('{:}'.format(info)) | ||||
|   logger.log('-'*100) | ||||
|  | ||||
|   logger.close() | ||||
|    | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Regularized Evolution Algorithm") | ||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   # channels and number-of-cells | ||||
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.') | ||||
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.') | ||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   parser.add_argument('--learning_rate',      type=float, help='The learning rate for REINFORCE.') | ||||
|   parser.add_argument('--RL_steps',           type=int,   help='The steps for REINFORCE.') | ||||
|   parser.add_argument('--EMA_momentum',       type=float, help='The momentum value for EMA.') | ||||
|   # log | ||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).') | ||||
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | ||||
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||
|   main(args) | ||||
		Reference in New Issue
	
	Block a user