updates
This commit is contained in:
		| @@ -3,10 +3,12 @@ from .search_model_darts_v2 import TinyNetworkDartsV2 | ||||
| from .search_model_gdas     import TinyNetworkGDAS | ||||
| from .search_model_setn     import TinyNetworkSETN | ||||
| from .search_model_enas     import TinyNetworkENAS | ||||
| from .search_model_random   import TinyNetworkRANDOM | ||||
| from .genotypes             import Structure as CellStructure, architectures as CellArchitectures | ||||
|  | ||||
| nas_super_nets = {'DARTS-V1': TinyNetworkDartsV1, | ||||
|                   'DARTS-V2': TinyNetworkDartsV2, | ||||
|                   'GDAS'    : TinyNetworkGDAS, | ||||
|                   'SETN'    : TinyNetworkSETN, | ||||
|                   'ENAS'    : TinyNetworkENAS} | ||||
|                   'ENAS'    : TinyNetworkENAS, | ||||
|                   'RANDOM'  : TinyNetworkRANDOM} | ||||
|   | ||||
| @@ -60,6 +60,17 @@ class Structure: | ||||
|       strings.append( string ) | ||||
|     return '+'.join(strings) | ||||
|  | ||||
|   def check_valid(self): | ||||
|     nodes = {0: True} | ||||
|     for i, node_info in enumerate(self.nodes): | ||||
|       sums = [] | ||||
|       for op, xin in node_info: | ||||
|         if op == 'none' or nodes[xin] == False: x = False | ||||
|         else: x = True | ||||
|         sums.append( x ) | ||||
|       nodes[i+1] = sum(sums) > 0 | ||||
|     return nodes[len(self.nodes)] | ||||
|  | ||||
|   def to_unique_str(self, consider_zero=False): | ||||
|     # this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation | ||||
|     # two operations are special, i.e., none and skip_connect | ||||
|   | ||||
							
								
								
									
										79
									
								
								lib/models/cell_searchs/search_model_random.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										79
									
								
								lib/models/cell_searchs/search_model_random.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,79 @@ | ||||
| ############################################################################## | ||||
| # Random Search and Reproducibility for Neural Architecture Search, UAI 2019 #  | ||||
| ############################################################################## | ||||
| import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkRANDOM(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space): | ||||
|     super(TinyNetworkRANDOM, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_cache = None | ||||
|      | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def random_genotype(self, set_cache): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op_name  = random.choice( self.op_names ) | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     arch = Structure( genotypes ) | ||||
|     if set_cache: self.arch_cache = arch | ||||
|     return arch | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell.forward_dynamic(feature, self.arch_cache) | ||||
|       else: feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|     return out, logits | ||||
		Reference in New Issue
	
	Block a user