Prototype generic nas model (cont.).
This commit is contained in:
		| @@ -6,7 +6,7 @@ import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from typing import Text | ||||
|  | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from ..cell_operations import ResNetBasicblock, drop_path | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
| from .search_model_enas_utils import Controller | ||||
| @@ -48,6 +48,7 @@ class GenericNAS201Model(nn.Module): | ||||
|     self.dynamic_cell = None | ||||
|     self._tau         = None | ||||
|     self._algo        = None | ||||
|     self._drop_path   = None | ||||
|  | ||||
|   def set_algo(self, algo: Text): | ||||
|     # used for searching | ||||
| @@ -62,7 +63,7 @@ class GenericNAS201Model(nn.Module): | ||||
|      | ||||
|   def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|     assert mode in ['gdas', 'enas', 'urs', 'joint', 'select', 'dynamic'] | ||||
|     self.mode = mode | ||||
|     self._mode = mode | ||||
|     if mode == 'dynamic': self.dynamic_cell = deepcopy(dynamic_cell) | ||||
|     else                : self.dynamic_cell = None | ||||
|  | ||||
| @@ -70,6 +71,10 @@ class GenericNAS201Model(nn.Module): | ||||
|   def mode(self): | ||||
|     return self._mode | ||||
|  | ||||
|   @property | ||||
|   def drop_path(self): | ||||
|     return self._drop_path | ||||
|  | ||||
|   @property | ||||
|   def weights(self): | ||||
|     xlist = list(self._stem.parameters()) | ||||
| @@ -100,6 +105,15 @@ class GenericNAS201Model(nn.Module): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self._cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       if self._algo == 'enas': | ||||
|         import pdb; pdb.set_trace() | ||||
|         print('-') | ||||
|       else: | ||||
|         return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() ) | ||||
|            | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={_max_nodes}, N={_layerN}, L={_Layer}, alg={_algo})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
| @@ -112,7 +126,7 @@ class GenericNAS201Model(nn.Module): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.op_names[ weights.argmax().item() ] | ||||
|           op_name = self._op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append(tuple(xlist)) | ||||
|     return Structure(genotypes) | ||||
| @@ -126,11 +140,11 @@ class GenericNAS201Model(nn.Module): | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         if use_random: | ||||
|           op_name  = random.choice(self.op_names) | ||||
|           op_name  = random.choice(self._op_names) | ||||
|         else: | ||||
|           weights  = alphas_cpu[ self.edge2index[node_str] ] | ||||
|           op_index = torch.multinomial(weights, 1).item() | ||||
|           op_name  = self.op_names[ op_index ] | ||||
|           op_name  = self._op_names[ op_index ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append(tuple(xlist)) | ||||
|     return Structure(genotypes) | ||||
| @@ -142,17 +156,20 @@ class GenericNAS201Model(nn.Module): | ||||
|     for i, node_info in enumerate(arch.nodes): | ||||
|       for op, xin in node_info: | ||||
|         node_str = '{:}<-{:}'.format(i+1, xin) | ||||
|         op_index = self.op_names.index(op) | ||||
|         op_index = self._op_names.index(op) | ||||
|         select_logits.append( logits[self.edge2index[node_str], op_index] ) | ||||
|     return sum(select_logits).item() | ||||
|  | ||||
|   def return_topK(self, K): | ||||
|     archs = Structure.gen_all(self.op_names, self._max_nodes, False) | ||||
|   def return_topK(self, K, use_random=False): | ||||
|     archs = Structure.gen_all(self._op_names, self._max_nodes, False) | ||||
|     pairs = [(self.get_log_prob(arch), arch) for arch in archs] | ||||
|     if K < 0 or K >= len(archs): K = len(archs) | ||||
|     sorted_pairs = sorted(pairs, key=lambda x: -x[0]) | ||||
|     return_pairs = [sorted_pairs[_][1] for _ in range(K)] | ||||
|     return return_pairs | ||||
|     if use_random: | ||||
|       return random.sample(archs, K) | ||||
|     else: | ||||
|       sorted_pairs = sorted(pairs, key=lambda x: -x[0]) | ||||
|       return_pairs = [sorted_pairs[_][1] for _ in range(K)] | ||||
|       return return_pairs | ||||
|  | ||||
|   def normalize_archp(self): | ||||
|     if self.mode == 'gdas': | ||||
|   | ||||
		Reference in New Issue
	
	Block a user