Update xlayers
This commit is contained in:
parent
f6a024a6ff
commit
80aaac4dfa
@ -21,6 +21,57 @@ from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from datasets.synthetic_core import get_synthetic_env
|
||||
from models.xcore import get_model
|
||||
from xlayers import super_core
|
||||
|
||||
|
||||
class LFNAmlp:
|
||||
"""A LFNA meta-model that uses the MLP as delta-net."""
|
||||
|
||||
def __init__(self, obs_dim, hidden_sizes, act_name):
|
||||
self.delta_net = super_core.SuperSequential(
|
||||
super_core.SuperLinear(obs_dim, hidden_sizes[0]),
|
||||
super_core.super_name2activation[act_name](),
|
||||
super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
||||
super_core.super_name2activation[act_name](),
|
||||
super_core.SuperLinear(hidden_sizes[1], 1),
|
||||
)
|
||||
self.meta_optimizer = torch.optim.Adam(
|
||||
self.delta_net.parameters(), lr=0.01, amsgrad=True
|
||||
)
|
||||
|
||||
def adapt(self, model, criterion, w_container, xs, ys):
|
||||
containers = [w_container]
|
||||
for idx, (x, y) in enumerate(zip(xs, ys)):
|
||||
y_hat = model.forward_with_container(x, containers[-1])
|
||||
loss = criterion(y_hat, y)
|
||||
gradients = torch.autograd.grad(loss, containers[-1].tensors)
|
||||
with torch.no_grad():
|
||||
flatten_w = containers[-1].flatten().view(-1, 1)
|
||||
flatten_g = containers[-1].flatten(gradients).view(-1, 1)
|
||||
input_statistics = torch.tensor([x.mean(), x.std()]).view(1, 2)
|
||||
input_statistics = input_statistics.expand(flatten_w.numel(), -1)
|
||||
delta_inputs = torch.cat((flatten_w, flatten_g, input_statistics), dim=-1)
|
||||
delta = self.delta_net(delta_inputs).view(-1)
|
||||
# delta = torch.clamp(delta, -0.5, 0.5)
|
||||
unflatten_delta = containers[-1].unflatten(delta)
|
||||
future_container = containers[-1].additive(unflatten_delta)
|
||||
containers.append(future_container)
|
||||
# containers = containers[1:]
|
||||
meta_loss = []
|
||||
for idx, (x, y) in enumerate(zip(xs, ys)):
|
||||
if idx == 0:
|
||||
continue
|
||||
current_container = containers[idx]
|
||||
y_hat = model.forward_with_container(x, current_container)
|
||||
loss = criterion(y_hat, y)
|
||||
meta_loss.append(loss)
|
||||
meta_loss = sum(meta_loss)
|
||||
meta_loss.backward()
|
||||
self.meta_optimizer.step()
|
||||
|
||||
def zero_grad(self):
|
||||
self.meta_optimizer.zero_grad()
|
||||
self.delta_net.zero_grad()
|
||||
|
||||
|
||||
class Population:
|
||||
@ -28,11 +79,23 @@ class Population:
|
||||
|
||||
def __init__(self):
|
||||
self._time2model = dict()
|
||||
self._time2score = dict() # higher is better
|
||||
|
||||
def append(self, timestamp, model):
|
||||
def append(self, timestamp, model, score):
|
||||
if timestamp in self._time2model:
|
||||
raise ValueError("This timestamp has been added.")
|
||||
self._time2model[timestamp] = model
|
||||
self._time2score[timestamp] = score
|
||||
|
||||
def query(self, timestamp):
|
||||
closet_timestamp = None
|
||||
for xtime, model in self._time2model.items():
|
||||
if (
|
||||
closet_timestamp is None
|
||||
or timestamp - closet_timestamp >= timestamp - xtime
|
||||
):
|
||||
closet_timestamp = xtime
|
||||
return self._time2model[closet_timestamp], closet_timestamp
|
||||
|
||||
|
||||
def main(args):
|
||||
@ -70,100 +133,39 @@ def main(args):
|
||||
)
|
||||
|
||||
w_container = base_model.named_parameters_buffers()
|
||||
criterion = torch.nn.MSELoss()
|
||||
print("There are {:} weights.".format(w_container.numel()))
|
||||
|
||||
adaptor = LFNAmlp(4, (50, 20), "leaky_relu")
|
||||
|
||||
pool = Population()
|
||||
pool.append(0, w_container)
|
||||
|
||||
# LFNA meta-training
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
for iepoch in range(args.epochs):
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
print("-")
|
||||
|
||||
for i, idx in enumerate(to_evaluate_indexes):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(
|
||||
per_timestamp_time.avg * (len(to_evaluate_indexes) - i), True
|
||||
)
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}][{:04d}]".format(i, len(to_evaluate_indexes), idx)
|
||||
+ " "
|
||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||||
+ need_time
|
||||
)
|
||||
# train the same data
|
||||
assert idx != 0
|
||||
historical_x = env_info["{:}-x".format(idx)]
|
||||
historical_y = env_info["{:}-y".format(idx)]
|
||||
# build model
|
||||
mean, std = historical_x.mean().item(), historical_x.std().item()
|
||||
model_kwargs = dict(input_dim=1, output_dim=1, mean=mean, std=std)
|
||||
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
# build optimizer
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||
criterion = torch.nn.MSELoss()
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(args.epochs * 0.25),
|
||||
int(args.epochs * 0.5),
|
||||
int(args.epochs * 0.75),
|
||||
],
|
||||
gamma=0.3,
|
||||
)
|
||||
train_metric = MSEMetric()
|
||||
best_loss, best_param = None, None
|
||||
for _iepoch in range(args.epochs):
|
||||
preds = model(historical_x)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, historical_y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
# save best
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
model.load_state_dict(best_param)
|
||||
with torch.no_grad():
|
||||
train_metric(preds, historical_y)
|
||||
train_results = train_metric.get_info()
|
||||
|
||||
metric = ComposeMetric(MSEMetric(), SaveMetric())
|
||||
eval_dataset = torch.utils.data.TensorDataset(
|
||||
env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)]
|
||||
)
|
||||
eval_loader = torch.utils.data.DataLoader(
|
||||
eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0
|
||||
)
|
||||
results = basic_eval_fn(eval_loader, model, metric, logger)
|
||||
log_str = (
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, env_info["total"])
|
||||
+ " train-mse: {:.5f}, eval-mse: {:.5f}".format(
|
||||
train_results["mse"], results["mse"]
|
||||
)
|
||||
)
|
||||
logger.log(log_str)
|
||||
for ibatch in range(args.meta_batch):
|
||||
sampled_timestamp = random.randint(0, train_time_bar)
|
||||
query_w_container, query_timestamp = pool.query(sampled_timestamp)
|
||||
# def adapt(self, model, w_container, xs, ys):
|
||||
xs, ys = [], []
|
||||
for it in range(sampled_timestamp, sampled_timestamp + args.max_seq):
|
||||
xs.append(env_info["{:}-x".format(it)])
|
||||
ys.append(env_info["{:}-y".format(it)])
|
||||
adaptor.adapt(base_model, criterion, query_w_container, xs, ys)
|
||||
import pdb
|
||||
|
||||
save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(
|
||||
idx, env_info["total"]
|
||||
)
|
||||
save_checkpoint(
|
||||
{
|
||||
"model_state_dict": model.state_dict(),
|
||||
"model": model,
|
||||
"index": idx,
|
||||
"timestamp": env_info["{:}-timestamp".format(idx)],
|
||||
},
|
||||
save_path,
|
||||
logger,
|
||||
)
|
||||
pdb.set_trace()
|
||||
print("-")
|
||||
logger.log("")
|
||||
|
||||
per_timestamp_time.update(time.time() - start_time)
|
||||
@ -188,10 +190,10 @@ if __name__ == "__main__":
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=512,
|
||||
help="The batch size",
|
||||
default=2,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
@ -199,6 +201,12 @@ if __name__ == "__main__":
|
||||
default=1000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_seq",
|
||||
type=int,
|
||||
default=5,
|
||||
help="The maximum length of the sequence.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
|
@ -34,3 +34,4 @@ def get_model(config: Dict[Text, Any], **kwargs):
|
||||
else:
|
||||
raise TypeError("Unkonwn model type: {:}".format(model_type))
|
||||
return model
|
||||
|
||||
|
@ -31,6 +31,9 @@ class SuperReLU(SuperModule):
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
return F.relu(input, inplace=self._inplace)
|
||||
|
||||
def forward_with_container(self, input, container, prefix=[]):
|
||||
return self.forward_raw(input)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "inplace=True" if self._inplace else ""
|
||||
|
||||
@ -53,6 +56,29 @@ class SuperLeakyReLU(SuperModule):
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
return F.leaky_relu(input, self._negative_slope, self._inplace)
|
||||
|
||||
def forward_with_container(self, input, container, prefix=[]):
|
||||
return self.forward_raw(input)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
inplace_str = "inplace=True" if self._inplace else ""
|
||||
return "negative_slope={}{}".format(self._negative_slope, inplace_str)
|
||||
|
||||
|
||||
class SuperTanh(SuperModule):
|
||||
"""Applies a the Tanh function element-wise."""
|
||||
|
||||
def __init__(self) -> None:
|
||||
super(SuperTanh, self).__init__()
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
return spaces.VirtualNode(id(self))
|
||||
|
||||
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
|
||||
return self.forward_raw(input)
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
return torch.tanh(input)
|
||||
|
||||
def forward_with_container(self, input, container, prefix=[]):
|
||||
return self.forward_raw(input)
|
||||
|
@ -111,3 +111,10 @@ class SuperSequential(SuperModule):
|
||||
for module in self:
|
||||
input = module(input)
|
||||
return input
|
||||
|
||||
def forward_with_container(self, input, container, prefix=[]):
|
||||
for index, module in enumerate(self):
|
||||
input = module.forward_with_container(
|
||||
input, container, prefix + [str(index)]
|
||||
)
|
||||
return input
|
||||
|
@ -27,8 +27,13 @@ from .super_transformer import SuperTransformerEncoderLayer
|
||||
|
||||
from .super_activations import SuperReLU
|
||||
from .super_activations import SuperLeakyReLU
|
||||
from .super_activations import SuperTanh
|
||||
|
||||
super_name2activation = {"relu": SuperReLU, "leaky_relu": SuperLeakyReLU}
|
||||
super_name2activation = {
|
||||
"relu": SuperReLU,
|
||||
"leaky_relu": SuperLeakyReLU,
|
||||
"tanh": SuperTanh,
|
||||
}
|
||||
|
||||
|
||||
from .super_trade_stem import SuperAlphaEBDv1
|
||||
|
@ -115,6 +115,16 @@ class SuperLinear(SuperModule):
|
||||
self._in_features, self._out_features, self._bias
|
||||
)
|
||||
|
||||
def forward_with_container(self, input, container, prefix=[]):
|
||||
super_weight_name = ".".join(prefix + ["_super_weight"])
|
||||
super_weight = container.query(super_weight_name)
|
||||
super_bias_name = ".".join(prefix + ["_super_bias"])
|
||||
if container.has(super_bias_name):
|
||||
super_bias = container.query(super_bias_name)
|
||||
else:
|
||||
super_bias = None
|
||||
return F.linear(input, super_weight, super_bias)
|
||||
|
||||
|
||||
class SuperMLPv1(SuperModule):
|
||||
"""An MLP layer: FC -> Activation -> Drop -> FC -> Drop."""
|
||||
|
@ -39,6 +39,41 @@ class TensorContainer:
|
||||
self._param_or_buffers = []
|
||||
self._name2index = dict()
|
||||
|
||||
def additive(self, tensors):
|
||||
result = TensorContainer()
|
||||
for index, name in enumerate(self._names):
|
||||
new_tensor = self._tensors[index] + tensors[index]
|
||||
result.append(name, new_tensor, self._param_or_buffers[index])
|
||||
return result
|
||||
|
||||
def no_grad_clone(self):
|
||||
result = TensorContainer()
|
||||
with torch.no_grad():
|
||||
for index, name in enumerate(self._names):
|
||||
result.append(
|
||||
name, self._tensors[index].clone(), self._param_or_buffers[index]
|
||||
)
|
||||
return result
|
||||
|
||||
@property
|
||||
def tensors(self):
|
||||
return self._tensors
|
||||
|
||||
def flatten(self, tensors=None):
|
||||
if tensors is None:
|
||||
tensors = self._tensors
|
||||
tensors = [tensor.view(-1) for tensor in tensors]
|
||||
return torch.cat(tensors)
|
||||
|
||||
def unflatten(self, tensor):
|
||||
tensors, s = [], 0
|
||||
for raw_tensor in self._tensors:
|
||||
length = raw_tensor.numel()
|
||||
x = torch.reshape(tensor[s : s + length], shape=raw_tensor.shape)
|
||||
tensors.append(x)
|
||||
s += length
|
||||
return tensors
|
||||
|
||||
def append(self, name, tensor, param_or_buffer):
|
||||
if not isinstance(tensor, torch.Tensor):
|
||||
raise TypeError(
|
||||
@ -54,6 +89,23 @@ class TensorContainer:
|
||||
)
|
||||
self._name2index[name] = len(self._names) - 1
|
||||
|
||||
def query(self, name):
|
||||
if not self.has(name):
|
||||
raise ValueError(
|
||||
"The {:} is not in {:}".format(name, list(self._name2index.keys()))
|
||||
)
|
||||
index = self._name2index[name]
|
||||
return self._tensors[index]
|
||||
|
||||
def has(self, name):
|
||||
return name in self._name2index
|
||||
|
||||
def has_prefix(self, prefix):
|
||||
for name, idx in self._name2index.items():
|
||||
if name.startswith(prefix):
|
||||
return name
|
||||
return False
|
||||
|
||||
def numel(self):
|
||||
total = 0
|
||||
for tensor in self._tensors:
|
||||
@ -181,3 +233,6 @@ class SuperModule(abc.ABC, nn.Module):
|
||||
)
|
||||
)
|
||||
return outputs
|
||||
|
||||
def forward_with_container(self, inputs, container, prefix=[]):
|
||||
raise NotImplementedError
|
||||
|
@ -161,6 +161,21 @@ class SuperSimpleLearnableNorm(SuperModule):
|
||||
mean, std = torch.unsqueeze(mean, dim=0), torch.unsqueeze(std, dim=0)
|
||||
return tensor.sub_(mean).div_(std)
|
||||
|
||||
def forward_with_container(self, input, container, prefix=[]):
|
||||
if not self._inplace:
|
||||
tensor = input.clone()
|
||||
else:
|
||||
tensor = input
|
||||
mean_name = ".".join(prefix + ["_mean"])
|
||||
std_name = ".".join(prefix + ["_std"])
|
||||
mean, std = (
|
||||
container.query(mean_name).to(tensor.device),
|
||||
torch.abs(container.query(std_name).to(tensor.device)) + self._eps,
|
||||
)
|
||||
while mean.ndim < tensor.ndim:
|
||||
mean, std = torch.unsqueeze(mean, dim=0), torch.unsqueeze(std, dim=0)
|
||||
return tensor.sub_(mean).div_(std)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "mean={mean}, std={std}, inplace={inplace}".format(
|
||||
mean=self._mean.item(), std=self._std.item(), inplace=self._inplace
|
||||
@ -191,3 +206,6 @@ class SuperIdentity(SuperModule):
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "inplace={inplace}".format(inplace=self._inplace)
|
||||
|
||||
def forward_with_container(self, input, container, prefix=[]):
|
||||
return self.forward_raw(input)
|
||||
|
120
lib/xlayers/super_rl_actor.py
Normal file
120
lib/xlayers/super_rl_actor.py
Normal file
@ -0,0 +1,120 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||
#####################################################
|
||||
# DISABLED / NOT-FINISHED
|
||||
#####################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import math
|
||||
from typing import Optional, Callable
|
||||
|
||||
import spaces
|
||||
from .super_container import SuperSequential
|
||||
from .super_linear import SuperLinear
|
||||
|
||||
|
||||
class SuperActor(SuperModule):
|
||||
"""A Actor in RL."""
|
||||
|
||||
def _distribution(self, obs):
|
||||
raise NotImplementedError
|
||||
|
||||
def _log_prob_from_distribution(self, pi, act):
|
||||
raise NotImplementedError
|
||||
|
||||
def forward_candidate(self, **kwargs):
|
||||
return self.forward_raw(**kwargs)
|
||||
|
||||
def forward_raw(self, obs, act=None):
|
||||
# Produce action distributions for given observations, and
|
||||
# optionally compute the log likelihood of given actions under
|
||||
# those distributions.
|
||||
pi = self._distribution(obs)
|
||||
logp_a = None
|
||||
if act is not None:
|
||||
logp_a = self._log_prob_from_distribution(pi, act)
|
||||
return pi, logp_a
|
||||
|
||||
|
||||
class SuperLfnaMetaMLP(SuperModule):
|
||||
def __init__(self, obs_dim, hidden_sizes, act_cls):
|
||||
super(SuperLfnaMetaMLP).__init__()
|
||||
self.delta_net = SuperSequential(
|
||||
SuperLinear(obs_dim, hidden_sizes[0]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[1], 1),
|
||||
)
|
||||
|
||||
|
||||
class SuperLfnaMetaMLP(SuperModule):
|
||||
def __init__(self, obs_dim, act_dim, hidden_sizes, act_cls):
|
||||
super(SuperLfnaMetaMLP).__init__()
|
||||
log_std = -0.5 * np.ones(act_dim, dtype=np.float32)
|
||||
self.log_std = torch.nn.Parameter(torch.as_tensor(log_std))
|
||||
self.mu_net = SuperSequential(
|
||||
SuperLinear(obs_dim, hidden_sizes[0]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[1], act_dim),
|
||||
)
|
||||
|
||||
def _distribution(self, obs):
|
||||
mu = self.mu_net(obs)
|
||||
std = torch.exp(self.log_std)
|
||||
return Normal(mu, std)
|
||||
|
||||
def _log_prob_from_distribution(self, pi, act):
|
||||
return pi.log_prob(act).sum(axis=-1)
|
||||
|
||||
def forward_candidate(self, **kwargs):
|
||||
return self.forward_raw(**kwargs)
|
||||
|
||||
def forward_raw(self, obs, act=None):
|
||||
# Produce action distributions for given observations, and
|
||||
# optionally compute the log likelihood of given actions under
|
||||
# those distributions.
|
||||
pi = self._distribution(obs)
|
||||
logp_a = None
|
||||
if act is not None:
|
||||
logp_a = self._log_prob_from_distribution(pi, act)
|
||||
return pi, logp_a
|
||||
|
||||
|
||||
class SuperMLPGaussianActor(SuperModule):
|
||||
def __init__(self, obs_dim, act_dim, hidden_sizes, act_cls):
|
||||
super(SuperMLPGaussianActor).__init__()
|
||||
log_std = -0.5 * np.ones(act_dim, dtype=np.float32)
|
||||
self.log_std = torch.nn.Parameter(torch.as_tensor(log_std))
|
||||
self.mu_net = SuperSequential(
|
||||
SuperLinear(obs_dim, hidden_sizes[0]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
||||
act_cls(),
|
||||
SuperLinear(hidden_sizes[1], act_dim),
|
||||
)
|
||||
|
||||
def _distribution(self, obs):
|
||||
mu = self.mu_net(obs)
|
||||
std = torch.exp(self.log_std)
|
||||
return Normal(mu, std)
|
||||
|
||||
def _log_prob_from_distribution(self, pi, act):
|
||||
return pi.log_prob(act).sum(axis=-1)
|
||||
|
||||
def forward_candidate(self, **kwargs):
|
||||
return self.forward_raw(**kwargs)
|
||||
|
||||
def forward_raw(self, obs, act=None):
|
||||
# Produce action distributions for given observations, and
|
||||
# optionally compute the log likelihood of given actions under
|
||||
# those distributions.
|
||||
pi = self._distribution(obs)
|
||||
logp_a = None
|
||||
if act is not None:
|
||||
logp_a = self._log_prob_from_distribution(pi, act)
|
||||
return pi, logp_a
|
Loading…
Reference in New Issue
Block a user