Update xlayers
This commit is contained in:
		| @@ -106,8 +106,13 @@ def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger): | ||||
|     logger.log("Using the optimizer: {:}".format(optimizer)) | ||||
|  | ||||
|     meta_model.set_best_dir(logger.path(None) / "ckps-pretrain-v2") | ||||
|     final_best_name = "final-pretrain-{:}.pth".format(args.rand_seed) | ||||
|     if meta_model.has_best(final_best_name): | ||||
|         meta_model.load_best(final_best_name) | ||||
|         return | ||||
|  | ||||
|     meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed)) | ||||
|     last_success_epoch = 0 | ||||
|     last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
|     for iepoch in range(args.epochs): | ||||
|         left_time = "Time Left: {:}".format( | ||||
| @@ -164,14 +169,21 @@ def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger): | ||||
|             ) | ||||
|             + ", batch={:}".format(len(total_meta_losses)) | ||||
|             + ", success={:}, best_score={:.4f}".format(success, -best_score) | ||||
|             + " {:}".format(left_time) | ||||
|             + ", LS={:}/{:}".format(last_success_epoch, early_stop_thresh) | ||||
|             + ", {:}".format(left_time) | ||||
|         ) | ||||
|         if iepoch - last_success_epoch >= args.early_stop_thresh * 5: | ||||
|         if success: | ||||
|             last_success_epoch = iepoch | ||||
|         if iepoch - last_success_epoch >= early_stop_thresh: | ||||
|             logger.log("Early stop the pre-training at {:}".format(iepoch)) | ||||
|             break | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|     meta_model.load_best() | ||||
|     # save to the final model | ||||
|     meta_model.set_best_name(final_best_name) | ||||
|     success, _ = meta_model.save_best(best_score + 1e-6) | ||||
|     assert success | ||||
|  | ||||
|  | ||||
| def pretrain_v1(base_model, meta_model, criterion, xenv, args, logger): | ||||
| @@ -189,7 +201,7 @@ def pretrain_v1(base_model, meta_model, criterion, xenv, args, logger): | ||||
|     meta_model.set_best_dir(logger.path(None) / "ckps-pretrain-v1") | ||||
|     meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed)) | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
|     last_success_epoch = 0 | ||||
|     last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh | ||||
|     for iepoch in range(args.epochs): | ||||
|         left_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||
| @@ -232,9 +244,12 @@ def pretrain_v1(base_model, meta_model, criterion, xenv, args, logger): | ||||
|             ) | ||||
|             + ", batch={:}".format(len(losses)) | ||||
|             + ", success={:}, best_score={:.4f}".format(success, -best_score) | ||||
|             + ", LS={:}/{:}".format(last_success_epoch, early_stop_thresh) | ||||
|             + " {:}".format(left_time) | ||||
|         ) | ||||
|         if iepoch - last_success_epoch >= args.early_stop_thresh * 5: | ||||
|         if success: | ||||
|             last_success_epoch = iepoch | ||||
|         if iepoch - last_success_epoch >= early_stop_thresh: | ||||
|             logger.log("Early stop the pre-training at {:}".format(iepoch)) | ||||
|             break | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
| @@ -521,7 +536,7 @@ if __name__ == "__main__": | ||||
|     parser.add_argument( | ||||
|         "--refine_lr", | ||||
|         type=float, | ||||
|         default=0.005, | ||||
|         default=0.001, | ||||
|         help="The learning rate for the optimizer, during refine", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
| @@ -533,6 +548,12 @@ if __name__ == "__main__": | ||||
|         default=20, | ||||
|         help="The #epochs for early stop.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--pretrain_early_stop_thresh", | ||||
|         type=int, | ||||
|         default=200, | ||||
|         help="The #epochs for early stop.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--seq_length", type=int, default=10, help="The sequence length." | ||||
|     ) | ||||
|   | ||||
| @@ -70,6 +70,7 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|                     dropout, | ||||
|                     norm_affine=False, | ||||
|                     order=super_core.LayerOrder.PostNorm, | ||||
|                     use_mask=True, | ||||
|                 ) | ||||
|             ) | ||||
|         layers.append(super_core.SuperLinear(time_embedding * 2, time_embedding)) | ||||
| @@ -162,11 +163,14 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|     def _obtain_time_embed(self, timestamps): | ||||
|         # timestamps is a batch of sequence of timestamps | ||||
|         batch, seq = timestamps.shape | ||||
|         meta_timestamps, meta_embeds = self.meta_timestamps, self.super_meta_embed | ||||
|         timestamp_q_embed = self._tscalar_embed(timestamps) | ||||
|         timestamp_k_embed = self._tscalar_embed(self.meta_timestamps.view(1, -1)) | ||||
|         timestamp_v_embed = self.super_meta_embed.unsqueeze(dim=0) | ||||
|         timestamp_k_embed = self._tscalar_embed(meta_timestamps.view(1, -1)) | ||||
|         timestamp_v_embed = meta_embeds.unsqueeze(dim=0) | ||||
|         # create the mask | ||||
|         mask = torch.unsqueeze(timestamps, dim=-1) <= meta_timestamps.view(1, 1, -1) | ||||
|         timestamp_embeds = self._trans_att( | ||||
|             timestamp_q_embed, timestamp_k_embed, timestamp_v_embed | ||||
|             timestamp_q_embed, timestamp_k_embed, timestamp_v_embed, mask | ||||
|         ) | ||||
|         # relative_timestamps = timestamps - timestamps[:, :1] | ||||
|         # relative_pos_embeds = self._tscalar_embed(relative_timestamps) | ||||
| @@ -186,8 +190,12 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|         layer_embed = self._super_layer_embed.view(1, 1, num_layer, -1).expand( | ||||
|             batch, seq, -1, -1 | ||||
|         ) | ||||
|         joint_embed = torch.cat((meta_embed, layer_embed), dim=-1) | ||||
|         batch_weights = self._generator(joint_embed) | ||||
|         joint_embed = torch.cat( | ||||
|             (meta_embed, layer_embed), dim=-1 | ||||
|         )  # batch, seq, num-layers, input-dim | ||||
|         batch_weights = self._generator( | ||||
|             joint_embed | ||||
|         )  # batch, seq, num-layers, num-weights | ||||
|         batch_containers = [] | ||||
|         for seq_weights in torch.split(batch_weights, 1): | ||||
|             seq_containers = [] | ||||
|   | ||||
		Reference in New Issue
	
	Block a user