Update xlayers
This commit is contained in:
		| @@ -31,12 +31,15 @@ class SuperSelfAttention(SuperModule): | ||||
|         qkv_bias: BoolSpaceType = False, | ||||
|         attn_drop: Optional[float] = None, | ||||
|         proj_drop: Optional[float] = None, | ||||
|         use_mask=False, | ||||
|     ): | ||||
|         super(SuperSelfAttention, self).__init__() | ||||
|         self._input_dim = input_dim | ||||
|         self._proj_dim = proj_dim | ||||
|         self._num_heads = num_heads | ||||
|         self._qkv_bias = qkv_bias | ||||
|         self._use_mask = use_mask | ||||
|         self._infinity = 1e9 | ||||
|  | ||||
|         self.q_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias) | ||||
|         self.k_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias) | ||||
| @@ -113,6 +116,12 @@ class SuperSelfAttention(SuperModule): | ||||
|             .permute(0, 2, 1, 3) | ||||
|         ) | ||||
|         attn_v1 = (q_v1 @ k_v1.transpose(-2, -1)) * math.sqrt(head_dim) | ||||
|         if self._use_mask: | ||||
|             mask = torch.triu( | ||||
|                 torch.ones((N, N), dtype=torch.bool, device=input.device), 1 | ||||
|             ) | ||||
|             mask = torch.unsqueeze(torch.unsqueeze(mask, dim=0), dim=0) | ||||
|             attn_v1 = attn_v1.masked_fill(mask, -self._infinity) | ||||
|         attn_v1 = attn_v1.softmax(dim=-1)  # B * #head * N * N | ||||
|         attn_v1 = self.attn_drop(attn_v1) | ||||
|         feats_v1 = (attn_v1 @ v_v1).permute(0, 2, 1, 3).reshape(B, N, -1) | ||||
| @@ -147,8 +156,14 @@ class SuperSelfAttention(SuperModule): | ||||
|         return outs | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return "input_dim={:}, proj_dim={:}, num_heads={:}".format( | ||||
|             self._input_dim, self._proj_dim, self._num_heads | ||||
|         return ( | ||||
|             "input_dim={:}, proj_dim={:}, num_heads={:}, mask={:}, infinity={:}".format( | ||||
|                 self._input_dim, | ||||
|                 self._proj_dim, | ||||
|                 self._num_heads, | ||||
|                 self._use_mask, | ||||
|                 self._infinity, | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|  | ||||
| @@ -181,6 +196,7 @@ class SuperQKVAttention(SuperModule): | ||||
|         self.attn_drop = nn.Dropout(attn_drop or 0.0) | ||||
|         self.proj = SuperLinear(proj_dim, proj_dim) | ||||
|         self.proj_drop = nn.Dropout(proj_drop or 0.0) | ||||
|         self._infinity = 1e9 | ||||
|  | ||||
|     @property | ||||
|     def num_heads(self): | ||||
| @@ -232,7 +248,9 @@ class SuperQKVAttention(SuperModule): | ||||
|         if "proj" in abstract_child: | ||||
|             self.proj.apply_candidate(abstract_child["proj"]) | ||||
|  | ||||
|     def forward_qkv(self, q_tensor, k_tensor, v_tensor, num_head: int) -> torch.Tensor: | ||||
|     def forward_qkv( | ||||
|         self, q_tensor, k_tensor, v_tensor, num_head: int, mask=None | ||||
|     ) -> torch.Tensor: | ||||
|         q = self.q_fc(q_tensor) | ||||
|         B, N, C = q.shape | ||||
|  | ||||
| @@ -257,6 +275,9 @@ class SuperQKVAttention(SuperModule): | ||||
|         ) | ||||
|         # compute the attention map | ||||
|         attn_v1 = (q_v1 @ k_v1.transpose(-2, -1)) * math.sqrt(head_dim) | ||||
|         if mask is not None: | ||||
|             mask = torch.unsqueeze(mask, dim=1) | ||||
|             attn_v1 = attn_v1.masked_fill(mask, -self._infinity) | ||||
|         attn_v1 = attn_v1.softmax(dim=-1)  # B * #head * N * S | ||||
|         attn_v1 = self.attn_drop(attn_v1) | ||||
|  | ||||
| @@ -281,26 +302,29 @@ class SuperQKVAttention(SuperModule): | ||||
|             feats = torch.cat([feats_v1, feats_v2], dim=-1) | ||||
|         return feats | ||||
|  | ||||
|     def forward_candidate(self, q_tensor, k_tensor, v_tensor) -> torch.Tensor: | ||||
|     def forward_candidate( | ||||
|         self, q_tensor, k_tensor, v_tensor, mask=None | ||||
|     ) -> torch.Tensor: | ||||
|         # check the num_heads: | ||||
|         if not spaces.is_determined(self._num_heads): | ||||
|             num_heads = self.abstract_child["_num_heads"].value | ||||
|         else: | ||||
|             num_heads = spaces.get_determined_value(self._num_heads) | ||||
|         feats = self.forward_qkv(q_tensor, k_tensor, v_tensor, num_heads) | ||||
|         feats = self.forward_qkv(q_tensor, k_tensor, v_tensor, num_heads, mask) | ||||
|         outs = self.proj(feats) | ||||
|         outs = self.proj_drop(outs) | ||||
|         return outs | ||||
|  | ||||
|     def forward_raw(self, q_tensor, k_tensor, v_tensor) -> torch.Tensor: | ||||
|         feats = self.forward_qkv(q_tensor, k_tensor, v_tensor, self.num_heads) | ||||
|     def forward_raw(self, q_tensor, k_tensor, v_tensor, mask=None) -> torch.Tensor: | ||||
|         feats = self.forward_qkv(q_tensor, k_tensor, v_tensor, self.num_heads, mask) | ||||
|         outs = self.proj(feats) | ||||
|         outs = self.proj_drop(outs) | ||||
|         return outs | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return "input_dim={:}, proj_dim={:}, num_heads={:}".format( | ||||
|         return "input_dim={:}, proj_dim={:}, num_heads={:}, infinity={:}".format( | ||||
|             (self.in_q_dim, self.in_k_dim, self.in_v_dim), | ||||
|             self._proj_dim, | ||||
|             self._num_heads, | ||||
|             self._infinity, | ||||
|         ) | ||||
|   | ||||
| @@ -117,16 +117,32 @@ class SuperModule(abc.ABC, nn.Module): | ||||
|         else: | ||||
|             return False, self._meta_info[BEST_SCORE_KEY] | ||||
|  | ||||
|     def load_best(self): | ||||
|         if BEST_DIR_KEY not in self._meta_info or BEST_SCORE_KEY not in self._meta_info: | ||||
|             raise ValueError("Please call save_best at first") | ||||
|         best_save_path = os.path.join( | ||||
|             self._meta_info[BEST_DIR_KEY], | ||||
|             "best-{:}.pth".format(self.__class__.__name__), | ||||
|         ) | ||||
|     def load_best(self, best_save_path=None): | ||||
|         if best_save_path is None: | ||||
|             if ( | ||||
|                 BEST_DIR_KEY not in self._meta_info | ||||
|                 or BEST_SCORE_KEY not in self._meta_info | ||||
|             ): | ||||
|                 raise ValueError("Please call save_best at first") | ||||
|             best_save_name = self._meta_info.get( | ||||
|                 BEST_NAME_KEY, "best-{:}.pth".format(self.__class__.__name__) | ||||
|             ) | ||||
|             best_save_path = os.path.join(self._meta_info[BEST_DIR_KEY], best_save_name) | ||||
|         state_dict = torch.load(best_save_path) | ||||
|         self.load_state_dict(state_dict) | ||||
|  | ||||
|     def has_best(self, best_name=None): | ||||
|         if BEST_DIR_KEY not in self._meta_info: | ||||
|             raise ValueError("Please set BEST_DIR_KEY at first") | ||||
|         if best_name is None: | ||||
|             best_save_name = self._meta_info.get( | ||||
|                 BEST_NAME_KEY, "best-{:}.pth".format(self.__class__.__name__) | ||||
|             ) | ||||
|         else: | ||||
|             best_save_name = best_name | ||||
|         best_save_path = os.path.join(self._meta_info[BEST_DIR_KEY], best_save_name) | ||||
|         return os.path.exists(best_save_path) | ||||
|  | ||||
|     @property | ||||
|     def abstract_search_space(self): | ||||
|         raise NotImplementedError | ||||
|   | ||||
| @@ -45,6 +45,7 @@ class SuperTransformerEncoderLayer(SuperModule): | ||||
|         norm_affine: bool = True, | ||||
|         act_layer: Callable[[], nn.Module] = nn.GELU, | ||||
|         order: LayerOrder = LayerOrder.PreNorm, | ||||
|         use_mask: bool = False, | ||||
|     ): | ||||
|         super(SuperTransformerEncoderLayer, self).__init__() | ||||
|         mha = SuperSelfAttention( | ||||
| @@ -54,6 +55,7 @@ class SuperTransformerEncoderLayer(SuperModule): | ||||
|             qkv_bias=qkv_bias, | ||||
|             attn_drop=drop, | ||||
|             proj_drop=drop, | ||||
|             use_mask=use_mask, | ||||
|         ) | ||||
|         mlp = SuperMLPv2( | ||||
|             d_model, | ||||
|   | ||||
		Reference in New Issue
	
	Block a user