Support accumulate and reset time function for API
This commit is contained in:
		
							
								
								
									
										266
									
								
								exps/algos-v2/R_EA.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										266
									
								
								exps/algos-v2/R_EA.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,266 @@ | |||||||
|  | ################################################## | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||||
|  | ################################################################## | ||||||
|  | # Regularized Evolution for Image Classifier Architecture Search # | ||||||
|  | ################################################################## | ||||||
|  | # python ./exps/algos-v2/R_EA.py --dataset cifar10 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||||
|  | # python ./exps/algos-v2/R_EA.py --dataset cifar100 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||||
|  | # python ./exps/algos-v2/R_EA.py --dataset ImageNet16-120 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||||
|  | # python ./exps/algos-v2/R_EA.py --dataset cifar10 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||||
|  | # | ||||||
|  | # | ||||||
|  | # | ||||||
|  | import os, sys, time, glob, random, argparse | ||||||
|  | import numpy as np, collections | ||||||
|  | from copy import deepcopy | ||||||
|  | import torch | ||||||
|  | import torch.nn as nn | ||||||
|  | from pathlib import Path | ||||||
|  | lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||||
|  | if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||||
|  | from config_utils import load_config, dict2config, configure2str | ||||||
|  | from datasets     import get_datasets, SearchDataset | ||||||
|  | from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||||
|  | from utils        import get_model_infos, obtain_accuracy | ||||||
|  | from log_utils    import AverageMeter, time_string, convert_secs2time | ||||||
|  | from nas_201_api  import NASBench201API, NASBench301API | ||||||
|  | from models       import CellStructure, get_search_spaces | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class Model(object): | ||||||
|  |  | ||||||
|  |   def __init__(self): | ||||||
|  |     self.arch = None | ||||||
|  |     self.accuracy = None | ||||||
|  |      | ||||||
|  |   def __str__(self): | ||||||
|  |     """Prints a readable version of this bitstring.""" | ||||||
|  |     return '{:}'.format(self.arch) | ||||||
|  |    | ||||||
|  |  | ||||||
|  | # This function is to mimic the training and evaluatinig procedure for a single architecture `arch`. | ||||||
|  | # The time_cost is calculated as the total training time for a few (e.g., 12 epochs) plus the evaluation time for one epoch. | ||||||
|  | # For use_012_epoch_training = True, the architecture is trained for 12 epochs, with LR being decaded from 0.1 to 0. | ||||||
|  | #       In this case, the LR schedular is converged. | ||||||
|  | # For use_012_epoch_training = False, the architecture is planed to be trained for 200 epochs, but we early stop its procedure. | ||||||
|  | #        | ||||||
|  | def train_and_eval(arch, nas_bench, extra_info, dataname='cifar10-valid', use_012_epoch_training=True): | ||||||
|  |  | ||||||
|  |   if use_012_epoch_training and nas_bench is not None: | ||||||
|  |     arch_index = nas_bench.query_index_by_arch( arch ) | ||||||
|  |     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch) | ||||||
|  |     valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time'] | ||||||
|  |     #_, valid_acc = info.get_metrics('cifar10-valid', 'x-valid' , 25, True) # use the validation accuracy after 25 training epochs | ||||||
|  |   elif not use_012_epoch_training and nas_bench is not None: | ||||||
|  |     # Please contact me if you want to use the following logic, because it has some potential issues. | ||||||
|  |     # Please use `use_012_epoch_training=False` for cifar10 only. | ||||||
|  |     # It did return values for cifar100 and ImageNet16-120, but it has some potential issues. (Please email me for more details) | ||||||
|  |     arch_index, nepoch = nas_bench.query_index_by_arch( arch ), 25 | ||||||
|  |     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch) | ||||||
|  |     xoinfo = nas_bench.get_more_info(arch_index, 'cifar10-valid', iepoch=None, hp='12') | ||||||
|  |     xocost = nas_bench.get_cost_info(arch_index, 'cifar10-valid', hp='200') | ||||||
|  |     info = nas_bench.get_more_info(arch_index, dataname, nepoch, hp='200', is_random=True) # use the validation accuracy after 25 training epochs, which is used in our ICLR submission (not the camera ready). | ||||||
|  |     cost = nas_bench.get_cost_info(arch_index, dataname, hp='200') | ||||||
|  |     # The following codes are used to estimate the time cost. | ||||||
|  |     # When we build NAS-Bench-201, architectures are trained on different machines and we can not use that time record. | ||||||
|  |     # When we create checkpoints for converged_LR, we run all experiments on 1080Ti, and thus the time for each architecture can be fairly compared. | ||||||
|  |     nums = {'ImageNet16-120-train': 151700, 'ImageNet16-120-valid': 3000, | ||||||
|  |             'cifar10-valid-train' : 25000,  'cifar10-valid-valid' : 25000, | ||||||
|  |             'cifar100-train'      : 50000,  'cifar100-valid'      : 5000} | ||||||
|  |     estimated_train_cost = xoinfo['train-per-time'] / nums['cifar10-valid-train'] * nums['{:}-train'.format(dataname)] / xocost['latency'] * cost['latency'] * nepoch | ||||||
|  |     estimated_valid_cost = xoinfo['valid-per-time'] / nums['cifar10-valid-valid'] * nums['{:}-valid'.format(dataname)] / xocost['latency'] * cost['latency'] | ||||||
|  |     try: | ||||||
|  |       valid_acc, time_cost = info['valid-accuracy'], estimated_train_cost + estimated_valid_cost | ||||||
|  |     except: | ||||||
|  |       valid_acc, time_cost = info['valtest-accuracy'], estimated_train_cost + estimated_valid_cost | ||||||
|  |   else: | ||||||
|  |     # train a model from scratch. | ||||||
|  |     raise ValueError('NOT IMPLEMENT YET') | ||||||
|  |   return valid_acc, time_cost | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def random_topology_func(op_names, max_nodes=4): | ||||||
|  |   # Return a random architecture | ||||||
|  |   def random_architecture(): | ||||||
|  |     genotypes = [] | ||||||
|  |     for i in range(1, max_nodes): | ||||||
|  |       xlist = [] | ||||||
|  |       for j in range(i): | ||||||
|  |         node_str = '{:}<-{:}'.format(i, j) | ||||||
|  |         op_name  = random.choice( op_names ) | ||||||
|  |         xlist.append((op_name, j)) | ||||||
|  |       genotypes.append( tuple(xlist) ) | ||||||
|  |     return CellStructure( genotypes ) | ||||||
|  |   return random_architecture | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def random_size_func(info): | ||||||
|  |   # Return a random architecture | ||||||
|  |   def random_architecture(): | ||||||
|  |     channels = [] | ||||||
|  |     for i in range(info['numbers']): | ||||||
|  |       channels.append( | ||||||
|  |         str(random.choice(info['candidates']))) | ||||||
|  |     return ':'.join(channels) | ||||||
|  |   return random_architecture | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def mutate_topology_func(op_names): | ||||||
|  |   """Computes the architecture for a child of the given parent architecture. | ||||||
|  |   The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another. | ||||||
|  |   """ | ||||||
|  |   def mutate_topology_func(parent_arch): | ||||||
|  |     child_arch = deepcopy( parent_arch ) | ||||||
|  |     node_id = random.randint(0, len(child_arch.nodes)-1) | ||||||
|  |     node_info = list( child_arch.nodes[node_id] ) | ||||||
|  |     snode_id = random.randint(0, len(node_info)-1) | ||||||
|  |     xop = random.choice( op_names ) | ||||||
|  |     while xop == node_info[snode_id][0]: | ||||||
|  |       xop = random.choice( op_names ) | ||||||
|  |     node_info[snode_id] = (xop, node_info[snode_id][1]) | ||||||
|  |     child_arch.nodes[node_id] = tuple( node_info ) | ||||||
|  |     return child_arch | ||||||
|  |   return mutate_topology_func | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def mutate_size_func(info): | ||||||
|  |   """Computes the architecture for a child of the given parent architecture. | ||||||
|  |   The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another. | ||||||
|  |   """ | ||||||
|  |   def mutate_size_func(parent_arch): | ||||||
|  |     child_arch = deepcopy(parent_arch) | ||||||
|  |     child_arch = child_arch.split(':') | ||||||
|  |     index = random.randint(0, len(child_arch)-1) | ||||||
|  |     child_arch[index] = str(random.choice(info['candidates'])) | ||||||
|  |     return ':'.join(child_arch) | ||||||
|  |   return mutate_size_func | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def regularized_evolution(cycles, population_size, sample_size, time_budget, random_arch, mutate_arch, api, dataset): | ||||||
|  |   """Algorithm for regularized evolution (i.e. aging evolution). | ||||||
|  |    | ||||||
|  |   Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image | ||||||
|  |   Classifier Architecture Search". | ||||||
|  |    | ||||||
|  |   Args: | ||||||
|  |     cycles: the number of cycles the algorithm should run for. | ||||||
|  |     population_size: the number of individuals to keep in the population. | ||||||
|  |     sample_size: the number of individuals that should participate in each tournament. | ||||||
|  |     time_budget: the upper bound of searching cost | ||||||
|  |  | ||||||
|  |   Returns: | ||||||
|  |     history: a list of `Model` instances, representing all the models computed | ||||||
|  |         during the evolution experiment. | ||||||
|  |   """ | ||||||
|  |   population = collections.deque() | ||||||
|  |   api.reset_time() | ||||||
|  |   history, total_time_cost = [], []  # Not used by the algorithm, only used to report results. | ||||||
|  |  | ||||||
|  |   # Initialize the population with random models. | ||||||
|  |   while len(population) < population_size: | ||||||
|  |     model = Model() | ||||||
|  |     model.arch = random_arch() | ||||||
|  |     model.accuracy, time_cost, total_cost = api.simulate_train_eval(model.arch, dataset, '12') | ||||||
|  |     # Append the info | ||||||
|  |     population.append(model) | ||||||
|  |     history.append(model) | ||||||
|  |     total_time_cost.append(total_cost) | ||||||
|  |  | ||||||
|  |   # Carry out evolution in cycles. Each cycle produces a model and removes another. | ||||||
|  |   while total_time_cost[-1] < time_budget: | ||||||
|  |     # Sample randomly chosen models from the current population. | ||||||
|  |     start_time, sample = time.time(), [] | ||||||
|  |     while len(sample) < sample_size: | ||||||
|  |       # Inefficient, but written this way for clarity. In the case of neural | ||||||
|  |       # nets, the efficiency of this line is irrelevant because training neural | ||||||
|  |       # nets is the rate-determining step. | ||||||
|  |       candidate = random.choice(list(population)) | ||||||
|  |       sample.append(candidate) | ||||||
|  |  | ||||||
|  |     # The parent is the best model in the sample. | ||||||
|  |     parent = max(sample, key=lambda i: i.accuracy) | ||||||
|  |  | ||||||
|  |     # Create the child model and store it. | ||||||
|  |     child = Model() | ||||||
|  |     child.arch = mutate_arch(parent.arch) | ||||||
|  |     child.accuracy, time_cost, total_cost = api.simulate_train_eval(model.arch, dataset, '12') | ||||||
|  |     # Append the info | ||||||
|  |     population.append(child) | ||||||
|  |     history.append(child) | ||||||
|  |     total_time_cost.append(total_cost) | ||||||
|  |  | ||||||
|  |     # Remove the oldest model. | ||||||
|  |     population.popleft() | ||||||
|  |   return history, total_time_cost | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def main(xargs, api): | ||||||
|  |   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||||
|  |   torch.backends.cudnn.enabled   = True | ||||||
|  |   torch.backends.cudnn.benchmark = False | ||||||
|  |   torch.backends.cudnn.deterministic = True | ||||||
|  |   torch.set_num_threads(xargs.workers) | ||||||
|  |   prepare_seed(xargs.rand_seed) | ||||||
|  |   logger = prepare_logger(args) | ||||||
|  |  | ||||||
|  |   search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') | ||||||
|  |   if xargs.search_space == 'tss': | ||||||
|  |     random_arch = random_topology_func(search_space) | ||||||
|  |     mutate_arch = mutate_topology_func(search_space) | ||||||
|  |   else: | ||||||
|  |     random_arch = random_size_func(search_space) | ||||||
|  |     mutate_arch = mutate_size_func(search_space) | ||||||
|  |  | ||||||
|  |   x_start_time = time.time() | ||||||
|  |   logger.log('{:} use api : {:}'.format(time_string(), api)) | ||||||
|  |   logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget)) | ||||||
|  |   history, total_times = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, api, xargs.dataset) | ||||||
|  |   logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_times[-1], time.time()-x_start_time)) | ||||||
|  |   best_arch = max(history, key=lambda i: i.accuracy) | ||||||
|  |   best_arch = best_arch.arch | ||||||
|  |   logger.log('{:} best arch is {:}'.format(time_string(), best_arch)) | ||||||
|  |    | ||||||
|  |   info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90') | ||||||
|  |   logger.log('{:}'.format(info)) | ||||||
|  |   logger.log('-'*100) | ||||||
|  |   logger.close() | ||||||
|  |   return logger.log_dir, [api.query_index_by_arch(x.arch) for x in history], total_times | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == '__main__': | ||||||
|  |   parser = argparse.ArgumentParser("Regularized Evolution Algorithm") | ||||||
|  |   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||||
|  |   parser.add_argument('--search_space',       type=str,   choices=['tss', 'sss'], help='Choose the search space.') | ||||||
|  |   # channels and number-of-cells | ||||||
|  |   parser.add_argument('--ea_cycles',          type=int,   help='The number of cycles in EA.') | ||||||
|  |   parser.add_argument('--ea_population',      type=int,   help='The population size in EA.') | ||||||
|  |   parser.add_argument('--ea_sample_size',     type=int,   help='The sample size in EA.') | ||||||
|  |   parser.add_argument('--time_budget',        type=int,   help='The total time cost budge for searching (in seconds).') | ||||||
|  |   # log | ||||||
|  |   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||||
|  |   parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.') | ||||||
|  |   parser.add_argument('--rand_seed',          type=int,   default=-1,   help='manual seed') | ||||||
|  |   args = parser.parse_args() | ||||||
|  |   #if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||||
|  |  | ||||||
|  |   if args.search_space == 'tss': | ||||||
|  |     api = NASBench201API(verbose=False) | ||||||
|  |   elif args.search_space == 'sss': | ||||||
|  |     api = NASBench301API(verbose=False) | ||||||
|  |   else: | ||||||
|  |     raise ValueError('Invalid search space : {:}'.format(args.search_space)) | ||||||
|  |  | ||||||
|  |   args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), 'R-EA-SS{:}'.format(args.ea_sample_size)) | ||||||
|  |   print('save-dir : {:}'.format(args.save_dir)) | ||||||
|  |  | ||||||
|  |   if args.rand_seed < 0: | ||||||
|  |     save_dir, all_info, num = None, {}, 500 | ||||||
|  |     for i in range(num): | ||||||
|  |       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num)) | ||||||
|  |       args.rand_seed = random.randint(1, 100000) | ||||||
|  |       save_dir, all_archs, all_total_times = main(args, api) | ||||||
|  |       all_info[i] = {'all_archs': all_archs, | ||||||
|  |                      'all_total_times': all_total_times} | ||||||
|  |     torch.save(all_info, save_dir / 'results.pth') | ||||||
|  |   else: | ||||||
|  |     main(args, api) | ||||||
| @@ -55,10 +55,16 @@ def get_cell_based_tiny_net(config): | |||||||
|  |  | ||||||
| # obtain the search space, i.e., a dict mapping the operation name into a python-function for this op | # obtain the search space, i.e., a dict mapping the operation name into a python-function for this op | ||||||
| def get_search_spaces(xtype, name) -> List[Text]: | def get_search_spaces(xtype, name) -> List[Text]: | ||||||
|   if xtype == 'cell': |   if xtype == 'cell' or xtype == 'tss':  # The topology search space. | ||||||
|     from .cell_operations import SearchSpaceNames |     from .cell_operations import SearchSpaceNames | ||||||
|     assert name in SearchSpaceNames, 'invalid name [{:}] in {:}'.format(name, SearchSpaceNames.keys()) |     assert name in SearchSpaceNames, 'invalid name [{:}] in {:}'.format(name, SearchSpaceNames.keys()) | ||||||
|     return SearchSpaceNames[name] |     return SearchSpaceNames[name] | ||||||
|  |   elif xtype == 'sss':  # The size search space. | ||||||
|  |     if name == 'nas-bench-301': | ||||||
|  |       return {'candidates': [8, 16, 24, 32, 40, 48, 56, 64], | ||||||
|  |               'numbers': 5} | ||||||
|  |     else: | ||||||
|  |       raise ValueError('Invalid name : {:}'.format(name)) | ||||||
|   else: |   else: | ||||||
|     raise ValueError('invalid search-space type is {:}'.format(xtype)) |     raise ValueError('invalid search-space type is {:}'.format(xtype)) | ||||||
|  |  | ||||||
|   | |||||||
| @@ -26,6 +26,7 @@ DARTS_SPACE           = ['none', 'skip_connect', 'dua_sepc_3x3', 'dua_sepc_5x5', | |||||||
|  |  | ||||||
| SearchSpaceNames = {'connect-nas'  : CONNECT_NAS_BENCHMARK, | SearchSpaceNames = {'connect-nas'  : CONNECT_NAS_BENCHMARK, | ||||||
|                     'nas-bench-201': NAS_BENCH_201, |                     'nas-bench-201': NAS_BENCH_201, | ||||||
|  |                     'nas-bench-301': NAS_BENCH_201, | ||||||
|                     'darts'        : DARTS_SPACE} |                     'darts'        : DARTS_SPACE} | ||||||
|  |  | ||||||
|  |  | ||||||
|   | |||||||
| @@ -58,6 +58,7 @@ class NASBench201API(NASBenchMetaAPI): | |||||||
|   def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None, |   def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None, | ||||||
|                verbose: bool=True): |                verbose: bool=True): | ||||||
|     self.filename = None |     self.filename = None | ||||||
|  |     self.reset_time() | ||||||
|     if file_path_or_dict is None: |     if file_path_or_dict is None: | ||||||
|       file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1]) |       file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1]) | ||||||
|       print ('Try to use the default NAS-Bench-201 path from {:}.'.format(file_path_or_dict)) |       print ('Try to use the default NAS-Bench-201 path from {:}.'.format(file_path_or_dict)) | ||||||
|   | |||||||
| @@ -57,6 +57,7 @@ class NASBench301API(NASBenchMetaAPI): | |||||||
|   """ The initialization function that takes the dataset file path (or a dict loaded from that path) as input. """ |   """ The initialization function that takes the dataset file path (or a dict loaded from that path) as input. """ | ||||||
|   def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None, verbose: bool=True): |   def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None, verbose: bool=True): | ||||||
|     self.filename = None |     self.filename = None | ||||||
|  |     self.reset_time() | ||||||
|     if file_path_or_dict is None: |     if file_path_or_dict is None: | ||||||
|       file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1]) |       file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1]) | ||||||
|     if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path): |     if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path): | ||||||
| @@ -128,7 +129,7 @@ class NASBench301API(NASBenchMetaAPI): | |||||||
|     """ |     """ | ||||||
|     if self.verbose: |     if self.verbose: | ||||||
|       print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp)) |       print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp)) | ||||||
|     self._query_info_str_by_arch(arch, hp, print_information) |     return self._query_info_str_by_arch(arch, hp, print_information) | ||||||
|  |  | ||||||
|   def get_more_info(self, index: int, dataset: Text, iepoch=None, hp='12', is_random=True): |   def get_more_info(self, index: int, dataset: Text, iepoch=None, hp='12', is_random=True): | ||||||
|     """This function will return the metric for the `index`-th architecture |     """This function will return the metric for the `index`-th architecture | ||||||
|   | |||||||
| @@ -61,6 +61,25 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | |||||||
|   def avaliable_hps(self): |   def avaliable_hps(self): | ||||||
|     return list(copy.deepcopy(self._avaliable_hps)) |     return list(copy.deepcopy(self._avaliable_hps)) | ||||||
|  |  | ||||||
|  |   @property | ||||||
|  |   def used_time(self): | ||||||
|  |     return self._used_time | ||||||
|  |  | ||||||
|  |   def reset_time(self): | ||||||
|  |     self._used_time = 0 | ||||||
|  |  | ||||||
|  |   def simulate_train_eval(self, arch, dataset, hp='12'): | ||||||
|  |     index = self.query_index_by_arch(arch) | ||||||
|  |     all_names = ('cifar10', 'cifar100', 'ImageNet16-120') | ||||||
|  |     assert dataset in all_names, 'Invalid dataset name : {:} vs {:}'.format(dataset, all_names) | ||||||
|  |     if dataset == 'cifar10': | ||||||
|  |       info = self.get_more_info(index, 'cifar10-valid', iepoch=None, hp=hp, is_random=True) | ||||||
|  |     else: | ||||||
|  |       info = self.get_more_info(index, dataset, iepoch=None, hp=hp, is_random=True) | ||||||
|  |     valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time'] | ||||||
|  |     self._used_time += time_cost | ||||||
|  |     return valid_acc, time_cost, self._used_time | ||||||
|  |  | ||||||
|   def random(self): |   def random(self): | ||||||
|     """Return a random index of all architectures.""" |     """Return a random index of all architectures.""" | ||||||
|     return random.randint(0, len(self.meta_archs)-1) |     return random.randint(0, len(self.meta_archs)-1) | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user