Add SuperSimpleNorm and update synthetic env
This commit is contained in:
		| @@ -1,9 +1,9 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 # | ||||
| ##################################################### | ||||
| # python exps/synthetic/baseline.py                 # | ||||
| ##################################################### | ||||
| import os, sys, copy | ||||
| ############################################################################ | ||||
| # CUDA_VISIBLE_DEVICES=0 python exps/synthetic/baseline.py                 # | ||||
| ############################################################################ | ||||
| import os, sys, copy, random | ||||
| import torch | ||||
| import numpy as np | ||||
| import argparse | ||||
| @@ -28,6 +28,8 @@ from datasets import ConstantGenerator, SinGenerator, SyntheticDEnv | ||||
| from datasets import DynamicQuadraticFunc | ||||
| from datasets.synthetic_example import create_example_v1 | ||||
|  | ||||
| from utils.temp_sync import optimize_fn, evaluate_fn | ||||
|  | ||||
|  | ||||
| def draw_fig(save_dir, timestamp, scatter_list): | ||||
|     save_path = save_dir / "{:04d}".format(timestamp) | ||||
| @@ -67,28 +69,55 @@ def draw_fig(save_dir, timestamp, scatter_list): | ||||
| def main(save_dir): | ||||
|     save_dir = Path(str(save_dir)) | ||||
|     save_dir.mkdir(parents=True, exist_ok=True) | ||||
|     dynamic_env, function = create_example_v1(100, num_per_task=500) | ||||
|     dynamic_env, function = create_example_v1(100, num_per_task=1000) | ||||
|  | ||||
|     additional_xaxis = np.arange(-6, 6, 0.1) | ||||
|     for timestamp, dataset in tqdm(dynamic_env, ncols=50): | ||||
|         num = dataset.shape[0] | ||||
|         xaxis = dataset[:, 0].numpy() | ||||
|     additional_xaxis = np.arange(-6, 6, 0.2) | ||||
|     models = dict() | ||||
|      | ||||
|     for idx, (timestamp, dataset) in enumerate(tqdm(dynamic_env, ncols=50)): | ||||
|         xaxis_all = dataset[:, 0].numpy() | ||||
|         # xaxis_all = np.concatenate((additional_xaxis, xaxis_all)) | ||||
|         # compute the ground truth | ||||
|         function.set_timestamp(timestamp) | ||||
|         yaxis = function(xaxis) | ||||
|         # xaxis = np.concatenate((additional_xaxis, xaxis)) | ||||
|         yaxis_all = function.noise_call(xaxis_all) | ||||
|  | ||||
|         # split the dataset | ||||
|         indexes = list(range(xaxis_all.shape[0])) | ||||
|         random.shuffle(indexes) | ||||
|         train_indexes = indexes[:len(indexes)//2] | ||||
|         valid_indexes = indexes[len(indexes)//2:] | ||||
|         train_xs, train_ys = xaxis_all[train_indexes], yaxis_all[train_indexes] | ||||
|         valid_xs, valid_ys = xaxis_all[valid_indexes], yaxis_all[valid_indexes] | ||||
|          | ||||
|         model, loss_fn, train_loss = optimize_fn(train_xs, train_ys) | ||||
|         # model, loss_fn, train_loss = optimize_fn(xaxis_all, yaxis_all) | ||||
|         pred_valid_ys, valid_loss = evaluate_fn(model, valid_xs, valid_ys, loss_fn) | ||||
|         print("[{:03d}] T-{:03d}, train-loss={:.5f}, valid-loss={:.5f}".format(idx, timestamp, train_loss, valid_loss)) | ||||
|  | ||||
|         # the first plot | ||||
|         scatter_list = [] | ||||
|         scatter_list.append( | ||||
|             { | ||||
|                 "xaxis": xaxis, | ||||
|                 "yaxis": yaxis, | ||||
|                 "xaxis": valid_xs, | ||||
|                 "yaxis": valid_ys, | ||||
|                 "color": "k", | ||||
|                 "s": 10, | ||||
|                 "alpha": 0.99, | ||||
|                 "label": "Timestamp={:02d}".format(timestamp), | ||||
|             } | ||||
|         ) | ||||
|  | ||||
|         scatter_list.append( | ||||
|             { | ||||
|                 "xaxis": valid_xs, | ||||
|                 "yaxis": pred_valid_ys, | ||||
|                 "color": "r", | ||||
|                 "s": 10, | ||||
|                 "alpha": 0.5, | ||||
|                 "label": "MLP at now" | ||||
|             } | ||||
|         ) | ||||
|          | ||||
|         draw_fig(save_dir, timestamp, scatter_list) | ||||
|     print("Save all figures into {:}".format(save_dir)) | ||||
|     save_dir = save_dir.resolve() | ||||
|   | ||||
		Reference in New Issue
	
	Block a user