diff --git a/README.md b/README.md index 9667444..83786a5 100644 --- a/README.md +++ b/README.md @@ -16,6 +16,7 @@ Some methods use knowledge distillation (KD), which require pre-trained models. ## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717) +In this paper, we proposed a differentiable searching strategy for transformable architectures, i.e., searching for the depth and width of a deep neural network. @@ -42,7 +43,8 @@ args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel n ## One-Shot Neural Architecture Search via Self-Evaluated Template Network - + + Train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. ``` CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10 SETN 96 -1 @@ -55,7 +57,7 @@ Searching codes come soon! ## [Searching for A Robust Neural Architecture in Four GPU Hours](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.pdf) - + The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/GDAS) and a paddlepaddle implementation is locate at [`others/paddlepaddle`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/paddlepaddle).