update GDAS and SETN
This commit is contained in:
		
							
								
								
									
										502
									
								
								lib/models/shape_searchs/SearchCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										502
									
								
								lib/models/shape_searchs/SearchCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,502 @@ | ||||
| import math, torch | ||||
| from collections import OrderedDict | ||||
| from bisect import bisect_right | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
| from .SoftSelect      import select2withP, ChannelWiseInter | ||||
| from .SoftSelect      import linear_forward | ||||
| from .SoftSelect      import get_width_choices | ||||
|  | ||||
|  | ||||
| def get_depth_choices(nDepth, return_num): | ||||
|   if nDepth == 2: | ||||
|     choices = (1, 2) | ||||
|   elif nDepth == 3: | ||||
|     choices = (1, 2, 3) | ||||
|   elif nDepth > 3: | ||||
|     choices = list(range(1, nDepth+1, 2)) | ||||
|     if choices[-1] < nDepth: choices.append(nDepth) | ||||
|   else: | ||||
|     raise ValueError('invalid nDepth : {:}'.format(nDepth)) | ||||
|   if return_num: return len(choices) | ||||
|   else         : return choices | ||||
|    | ||||
|  | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|   iC = conv.in_channels | ||||
|   fill_size = list(inputs.size()) | ||||
|   fill_size[1] = iC - fill_size[1] | ||||
|   filled  = torch.zeros(fill_size, device=inputs.device) | ||||
|   xinputs = torch.cat((inputs, filled), dim=1) | ||||
|   outputs = conv(xinputs) | ||||
|   selecteds = [outputs[:,:oC] for oC in choices] | ||||
|   return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     self.InShape  = None | ||||
|     self.OutShape = None | ||||
|     self.choices  = get_width_choices(nOut) | ||||
|     self.register_buffer('choices_tensor', torch.Tensor( self.choices )) | ||||
|  | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     #if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     #else       : self.bn  = None | ||||
|     self.has_bn = has_bn | ||||
|     self.BNs  = nn.ModuleList() | ||||
|     for i, _out in enumerate(self.choices): | ||||
|       self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|     self.in_dim   = nIn | ||||
|     self.out_dim  = nOut | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_flops(self, channels, check_range=True, divide=1): | ||||
|     iC, oC = channels | ||||
|     if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels) | ||||
|     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape) | ||||
|     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape) | ||||
|     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups) | ||||
|     all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|     flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|     if self.conv.bias is not None: flops += all_positions / divide | ||||
|     return flops | ||||
|  | ||||
|   def get_range(self): | ||||
|     return [self.choices] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|     index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|     probability = torch.squeeze(probability) | ||||
|     assert len(index) == 2, 'invalid length : {:}'.format(index) | ||||
|     # compute expected flop | ||||
|     #coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|     expected_outC = (self.choices_tensor * probability).sum() | ||||
|     expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     # convolutional layer | ||||
|     out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|     out_bns   = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|     # merge | ||||
|     out_channel = max([x.size(1) for x in out_bns]) | ||||
|     outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|     outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|     out  = outA * prob[0] + outB * prob[1] | ||||
|     #out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     return out, expected_outC, expected_flop | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.has_bn:out= self.BNs[-1]( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     if self.InShape is None: | ||||
|       self.InShape  = (inputs.size(-2), inputs.size(-1)) | ||||
|       self.OutShape = (out.size(-2)   , out.size(-1)) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   expansion = 1 | ||||
|   num_conv  = 2 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_a.get_range() + self.conv_b.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 3, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_a.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_b.get_flops([channels[1], channels[2]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_C = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 | ||||
|     out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC  , probability[0], indexes[0], probs[0]) ) | ||||
|     out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[1], indexes[1], probs[1]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_b) | ||||
|     return out, expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c]) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, basicblock) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes * self.expansion | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 4, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) | ||||
|     flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_D = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_D = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, bottleneck) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 | ||||
|     out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC    , probability[0], indexes[0], probs[0]) ) | ||||
|     out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) ) | ||||
|     out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[2], indexes[2], probs[2]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_1x4) | ||||
|     return out, expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c]) | ||||
|  | ||||
|  | ||||
|  | ||||
| class SearchShapeCifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, num_classes): | ||||
|     super(SearchShapeCifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|  | ||||
|     self.message      = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes  = num_classes | ||||
|     self.channels     = [16] | ||||
|     self.layers       = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     self.InShape      = None | ||||
|     self.depth_info   = OrderedDict() | ||||
|     self.depth_at_i   = OrderedDict() | ||||
|     for stage in range(3): | ||||
|       cur_block_choices = get_depth_choices(layer_blocks, False) | ||||
|       assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks) | ||||
|       self.message += "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(stage, cur_block_choices, layer_blocks) | ||||
|       block_choices, xstart = [], len(self.layers) | ||||
|       for iL in range(layer_blocks): | ||||
|         iC     = self.channels[-1] | ||||
|         planes = 16 * (2**stage) | ||||
|         stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||
|         # added for depth | ||||
|         layer_index = len(self.layers) - 1 | ||||
|         if iL + 1 in cur_block_choices: block_choices.append( layer_index ) | ||||
|         if iL + 1 == layer_blocks: | ||||
|           self.depth_info[layer_index] = {'choices': block_choices, | ||||
|                                           'stage'  : stage, | ||||
|                                           'xstart' : xstart} | ||||
|     self.depth_info_list = [] | ||||
|     for xend, info in self.depth_info.items(): | ||||
|       self.depth_info_list.append( (xend, info) ) | ||||
|       xstart, xstage = info['xstart'], info['stage'] | ||||
|       for ilayer in range(xstart, xend+1): | ||||
|         idx = bisect_right(info['choices'], ilayer-1) | ||||
|         self.depth_at_i[ilayer] = (xstage, idx) | ||||
|  | ||||
|     self.avgpool     = nn.AvgPool2d(8) | ||||
|     self.classifier  = nn.Linear(module.out_dim, num_classes) | ||||
|     self.InShape     = None | ||||
|     self.tau         = -1 | ||||
|     self.search_mode = 'basic' | ||||
|     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|      | ||||
|     # parameters for width | ||||
|     self.Ranges = [] | ||||
|     self.layer2indexRange = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       start_index = len(self.Ranges) | ||||
|       self.Ranges += layer.get_range() | ||||
|       self.layer2indexRange.append( (start_index, len(self.Ranges)) ) | ||||
|     assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth) | ||||
|  | ||||
|     self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None)))) | ||||
|     self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True)))) | ||||
|     nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|     nn.init.normal_(self.depth_attentions, 0, 0.01) | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def arch_parameters(self, LR=None): | ||||
|     if LR is None: | ||||
|       return [self.width_attentions, self.depth_attentions] | ||||
|     else: | ||||
|       return [ | ||||
|                {"params": self.width_attentions, "lr": LR}, | ||||
|                {"params": self.depth_attentions, "lr": LR}, | ||||
|              ] | ||||
|  | ||||
|   def base_parameters(self): | ||||
|     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) | ||||
|  | ||||
|   def get_flop(self, mode, config_dict, extra_info): | ||||
|     if config_dict is not None: config_dict = config_dict.copy() | ||||
|     # select channels  | ||||
|     channels = [3] | ||||
|     for i, weight in enumerate(self.width_attentions): | ||||
|       if mode == 'genotype': | ||||
|         with torch.no_grad(): | ||||
|           probe = nn.functional.softmax(weight, dim=0) | ||||
|           C = self.Ranges[i][ torch.argmax(probe).item() ] | ||||
|       elif mode == 'max': | ||||
|         C = self.Ranges[i][-1] | ||||
|       elif mode == 'fix': | ||||
|         C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||
|       elif mode == 'random': | ||||
|         assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info) | ||||
|         with torch.no_grad(): | ||||
|           prob = nn.functional.softmax(weight, dim=0) | ||||
|           approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||
|           for j in range(prob.size(0)): | ||||
|             prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2) | ||||
|           C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ] | ||||
|       else: | ||||
|         raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|       channels.append( C ) | ||||
|     # select depth | ||||
|     if mode == 'genotype': | ||||
|       with torch.no_grad(): | ||||
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | ||||
|     elif mode == 'max' or mode == 'fix': | ||||
|       choices = [depth_probs.size(1)-1 for _ in range(depth_probs.size(0))] | ||||
|     elif mode == 'random': | ||||
|       with torch.no_grad(): | ||||
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         choices = torch.multinomial(depth_probs, 1, False).cpu().tolist() | ||||
|     else: | ||||
|       raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|     selected_layers = [] | ||||
|     for choice, xvalue in zip(choices, self.depth_info_list): | ||||
|       xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1 | ||||
|       selected_layers.append(xtemp) | ||||
|     flop = 0 | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       s, e = self.layer2indexRange[i] | ||||
|       xchl = tuple( channels[s:e+1] ) | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         if xatti <= choices[xstagei]: # leave this depth | ||||
|           flop+= layer.get_flops(xchl) | ||||
|         else: | ||||
|           flop+= 0 # do not use this layer | ||||
|       else: | ||||
|         flop+= layer.get_flops(xchl) | ||||
|     # the last fc layer | ||||
|     flop += channels[-1] * self.classifier.out_features | ||||
|     if config_dict is None: | ||||
|       return flop / 1e6 | ||||
|     else: | ||||
|       config_dict['xchannels']  = channels | ||||
|       config_dict['xblocks']    = selected_layers | ||||
|       config_dict['super_type'] = 'infer-shape' | ||||
|       config_dict['estimated_FLOP'] = flop / 1e6 | ||||
|       return flop / 1e6, config_dict | ||||
|  | ||||
|   def get_arch_info(self): | ||||
|     string = "for depth and width, there are {:} + {:} attention probabilities.".format(len(self.depth_attentions), len(self.width_attentions)) | ||||
|     string+= '\n{:}'.format(self.depth_info) | ||||
|     discrepancy = [] | ||||
|     with torch.no_grad(): | ||||
|       for i, att in enumerate(self.depth_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:17s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|       string += '\n-----------------------------------------------' | ||||
|       for i, att in enumerate(self.width_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:52s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|     return string, discrepancy | ||||
|  | ||||
|   def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio) | ||||
|     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, inputs): | ||||
|     flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|     flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|     flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] ) | ||||
|     selected_widths, selected_width_probs = select2withP(self.width_attentions, self.tau) | ||||
|     selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | ||||
|     with torch.no_grad(): | ||||
|       selected_widths = selected_widths.cpu() | ||||
|  | ||||
|     x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|     feature_maps = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       selected_w_index = selected_widths     [last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       selected_w_probs = selected_width_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       layer_prob       = flop_width_probs    [last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) ) | ||||
|       feature_maps.append( x ) | ||||
|       last_channel_idx += layer.num_conv | ||||
|       if i in self.depth_info: # aggregate the information | ||||
|         choices = self.depth_info[i]['choices'] | ||||
|         xstagei = self.depth_info[i]['stage'] | ||||
|         #print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist())) | ||||
|         #for A, W in zip(choices, selected_depth_probs[xstagei]): | ||||
|         #  print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W)) | ||||
|         possible_tensors = [] | ||||
|         max_C = max( feature_maps[A].size(1) for A in choices ) | ||||
|         for tempi, A in enumerate(choices): | ||||
|           xtensor = ChannelWiseInter(feature_maps[A], max_C) | ||||
|           #drop_ratio = 1-(tempi+1.0)/len(choices) | ||||
|           #xtensor = drop_path(xtensor, drop_ratio) | ||||
|           possible_tensors.append( xtensor ) | ||||
|         weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) ) | ||||
|         x = weighted_sum | ||||
|          | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop | ||||
|       else: | ||||
|         x_expected_flop = expected_flop | ||||
|       flops.append( x_expected_flop ) | ||||
|     flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = linear_forward(features, self.classifier) | ||||
|     return logits, torch.stack( [sum(flops)] ) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										337
									
								
								lib/models/shape_searchs/SearchCifarResNet_depth.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										337
									
								
								lib/models/shape_searchs/SearchCifarResNet_depth.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,337 @@ | ||||
| import math, torch | ||||
| from collections import OrderedDict | ||||
| from bisect import bisect_right | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
| from .SoftSelect      import select2withP, ChannelWiseInter | ||||
| from .SoftSelect      import linear_forward | ||||
| from .SoftSelect      import get_width_choices | ||||
|  | ||||
|  | ||||
| def get_depth_choices(nDepth, return_num): | ||||
|   if nDepth == 2: | ||||
|     choices = (1, 2) | ||||
|   elif nDepth == 3: | ||||
|     choices = (1, 2, 3) | ||||
|   elif nDepth > 3: | ||||
|     choices = list(range(1, nDepth+1, 2)) | ||||
|     if choices[-1] < nDepth: choices.append(nDepth) | ||||
|   else: | ||||
|     raise ValueError('invalid nDepth : {:}'.format(nDepth)) | ||||
|   if return_num: return len(choices) | ||||
|   else         : return choices | ||||
|  | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     self.InShape  = None | ||||
|     self.OutShape = None | ||||
|     self.choices  = get_width_choices(nOut) | ||||
|     self.register_buffer('choices_tensor', torch.Tensor( self.choices )) | ||||
|  | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     else       : self.bn  = None | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=False) | ||||
|     else       : self.relu = None | ||||
|     self.in_dim   = nIn | ||||
|     self.out_dim  = nOut | ||||
|  | ||||
|   def get_flops(self, divide=1): | ||||
|     iC, oC = self.in_dim, self.out_dim | ||||
|     assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels) | ||||
|     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape) | ||||
|     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape) | ||||
|     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups) | ||||
|     all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|     flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|     if self.conv.bias is not None: flops += all_positions / divide | ||||
|     return flops | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.bn  : out = self.bn( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     if self.InShape is None: | ||||
|       self.InShape  = (inputs.size(-2), inputs.size(-1)) | ||||
|       self.OutShape = (out.size(-2)   , out.size(-1)) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   expansion = 1 | ||||
|   num_conv  = 2 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_flops(self, divide=1): | ||||
|     flop_A = self.conv_a.get_flops(divide) | ||||
|     flop_B = self.conv_b.get_flops(divide) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_C = self.downsample.get_flops(divide) | ||||
|     else: | ||||
|       flop_C = 0 | ||||
|     return flop_A + flop_B + flop_C | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, basicblock) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes * self.expansion | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range() | ||||
|  | ||||
|   def get_flops(self, divide): | ||||
|     flop_A = self.conv_1x1.get_flops(divide) | ||||
|     flop_B = self.conv_3x3.get_flops(divide) | ||||
|     flop_C = self.conv_1x4.get_flops(divide) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_D = self.downsample.get_flops(divide) | ||||
|     else: | ||||
|       flop_D = 0 | ||||
|     return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, bottleneck) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class SearchDepthCifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, num_classes): | ||||
|     super(SearchDepthCifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|  | ||||
|     self.message      = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes  = num_classes | ||||
|     self.channels     = [16] | ||||
|     self.layers       = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     self.InShape      = None | ||||
|     self.depth_info   = OrderedDict() | ||||
|     self.depth_at_i   = OrderedDict() | ||||
|     for stage in range(3): | ||||
|       cur_block_choices = get_depth_choices(layer_blocks, False) | ||||
|       assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks) | ||||
|       self.message += "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(stage, cur_block_choices, layer_blocks) | ||||
|       block_choices, xstart = [], len(self.layers) | ||||
|       for iL in range(layer_blocks): | ||||
|         iC     = self.channels[-1] | ||||
|         planes = 16 * (2**stage) | ||||
|         stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||
|         # added for depth | ||||
|         layer_index = len(self.layers) - 1 | ||||
|         if iL + 1 in cur_block_choices: block_choices.append( layer_index ) | ||||
|         if iL + 1 == layer_blocks: | ||||
|           self.depth_info[layer_index] = {'choices': block_choices, | ||||
|                                           'stage'  : stage, | ||||
|                                           'xstart' : xstart} | ||||
|     self.depth_info_list = [] | ||||
|     for xend, info in self.depth_info.items(): | ||||
|       self.depth_info_list.append( (xend, info) ) | ||||
|       xstart, xstage = info['xstart'], info['stage'] | ||||
|       for ilayer in range(xstart, xend+1): | ||||
|         idx = bisect_right(info['choices'], ilayer-1) | ||||
|         self.depth_at_i[ilayer] = (xstage, idx) | ||||
|  | ||||
|     self.avgpool     = nn.AvgPool2d(8) | ||||
|     self.classifier  = nn.Linear(module.out_dim, num_classes) | ||||
|     self.InShape     = None | ||||
|     self.tau         = -1 | ||||
|     self.search_mode = 'basic' | ||||
|     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|      | ||||
|  | ||||
|     self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True)))) | ||||
|     nn.init.normal_(self.depth_attentions, 0, 0.01) | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def arch_parameters(self): | ||||
|     return [self.depth_attentions] | ||||
|  | ||||
|   def base_parameters(self): | ||||
|     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) | ||||
|  | ||||
|   def get_flop(self, mode, config_dict, extra_info): | ||||
|     if config_dict is not None: config_dict = config_dict.copy() | ||||
|     # select depth | ||||
|     if mode == 'genotype': | ||||
|       with torch.no_grad(): | ||||
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | ||||
|     elif mode == 'max': | ||||
|       choices = [depth_probs.size(1)-1 for _ in range(depth_probs.size(0))] | ||||
|     elif mode == 'random': | ||||
|       with torch.no_grad(): | ||||
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         choices = torch.multinomial(depth_probs, 1, False).cpu().tolist() | ||||
|     else: | ||||
|       raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|     selected_layers = [] | ||||
|     for choice, xvalue in zip(choices, self.depth_info_list): | ||||
|       xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1 | ||||
|       selected_layers.append(xtemp) | ||||
|     flop = 0 | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         if xatti <= choices[xstagei]: # leave this depth | ||||
|           flop+= layer.get_flops() | ||||
|         else: | ||||
|           flop+= 0 # do not use this layer | ||||
|       else: | ||||
|         flop+= layer.get_flops() | ||||
|     # the last fc layer | ||||
|     flop += self.classifier.in_features * self.classifier.out_features | ||||
|     if config_dict is None: | ||||
|       return flop / 1e6 | ||||
|     else: | ||||
|       config_dict['xblocks']    = selected_layers | ||||
|       config_dict['super_type'] = 'infer-depth' | ||||
|       config_dict['estimated_FLOP'] = flop / 1e6 | ||||
|       return flop / 1e6, config_dict | ||||
|  | ||||
|   def get_arch_info(self): | ||||
|     string = "for depth, there are {:} attention probabilities.".format(len(self.depth_attentions)) | ||||
|     string+= '\n{:}'.format(self.depth_info) | ||||
|     discrepancy = [] | ||||
|     with torch.no_grad(): | ||||
|       for i, att in enumerate(self.depth_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:17s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|     return string, discrepancy | ||||
|  | ||||
|   def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio) | ||||
|     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, inputs): | ||||
|     flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|     flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] ) | ||||
|     selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | ||||
|  | ||||
|     x, flops = inputs, [] | ||||
|     feature_maps = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       layer_i = layer( x ) | ||||
|       feature_maps.append( layer_i ) | ||||
|       if i in self.depth_info: # aggregate the information | ||||
|         choices = self.depth_info[i]['choices'] | ||||
|         xstagei = self.depth_info[i]['stage'] | ||||
|         possible_tensors = [] | ||||
|         for tempi, A in enumerate(choices): | ||||
|           xtensor = feature_maps[A] | ||||
|           possible_tensors.append( xtensor ) | ||||
|         weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) ) | ||||
|         x = weighted_sum | ||||
|       else: | ||||
|         x = layer_i | ||||
|         | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         #print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6))) | ||||
|         x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops(1e6) | ||||
|       else: | ||||
|         x_expected_flop = layer.get_flops(1e6) | ||||
|       flops.append( x_expected_flop ) | ||||
|     flops.append( (self.classifier.in_features * self.classifier.out_features*1.0/1e6) ) | ||||
|  | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = linear_forward(features, self.classifier) | ||||
|     return logits, torch.stack( [sum(flops)] ) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										391
									
								
								lib/models/shape_searchs/SearchCifarResNet_width.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										391
									
								
								lib/models/shape_searchs/SearchCifarResNet_width.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,391 @@ | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
| from .SoftSelect      import select2withP, ChannelWiseInter | ||||
| from .SoftSelect      import linear_forward | ||||
| from .SoftSelect      import get_width_choices as get_choices | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|   iC = conv.in_channels | ||||
|   fill_size = list(inputs.size()) | ||||
|   fill_size[1] = iC - fill_size[1] | ||||
|   filled  = torch.zeros(fill_size, device=inputs.device) | ||||
|   xinputs = torch.cat((inputs, filled), dim=1) | ||||
|   outputs = conv(xinputs) | ||||
|   selecteds = [outputs[:,:oC] for oC in choices] | ||||
|   return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     self.InShape  = None | ||||
|     self.OutShape = None | ||||
|     self.choices  = get_choices(nOut) | ||||
|     self.register_buffer('choices_tensor', torch.Tensor( self.choices )) | ||||
|  | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     #if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     #else       : self.bn  = None | ||||
|     self.has_bn = has_bn | ||||
|     self.BNs  = nn.ModuleList() | ||||
|     for i, _out in enumerate(self.choices): | ||||
|       self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|     self.in_dim   = nIn | ||||
|     self.out_dim  = nOut | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_flops(self, channels, check_range=True, divide=1): | ||||
|     iC, oC = channels | ||||
|     if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels) | ||||
|     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape) | ||||
|     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape) | ||||
|     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups) | ||||
|     all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|     flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|     if self.conv.bias is not None: flops += all_positions / divide | ||||
|     return flops | ||||
|  | ||||
|   def get_range(self): | ||||
|     return [self.choices] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|     index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|     probability = torch.squeeze(probability) | ||||
|     assert len(index) == 2, 'invalid length : {:}'.format(index) | ||||
|     # compute expected flop | ||||
|     #coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|     expected_outC = (self.choices_tensor * probability).sum() | ||||
|     expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     # convolutional layer | ||||
|     out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|     out_bns   = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|     # merge | ||||
|     out_channel = max([x.size(1) for x in out_bns]) | ||||
|     outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|     outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|     out  = outA * prob[0] + outB * prob[1] | ||||
|     #out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     return out, expected_outC, expected_flop | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.has_bn:out= self.BNs[-1]( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     if self.InShape is None: | ||||
|       self.InShape  = (inputs.size(-2), inputs.size(-1)) | ||||
|       self.OutShape = (out.size(-2)   , out.size(-1)) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   expansion = 1 | ||||
|   num_conv  = 2 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_a.get_range() + self.conv_b.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 3, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_a.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_b.get_flops([channels[1], channels[2]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_C = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 | ||||
|     out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC  , probability[0], indexes[0], probs[0]) ) | ||||
|     out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[1], indexes[1], probs[1]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_b) | ||||
|     return out, expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c]) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, basicblock) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes * self.expansion | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 4, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) | ||||
|     flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_D = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_D = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, bottleneck) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 | ||||
|     out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC    , probability[0], indexes[0], probs[0]) ) | ||||
|     out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) ) | ||||
|     out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[2], indexes[2], probs[2]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_1x4) | ||||
|     return out, expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c]) | ||||
|  | ||||
|  | ||||
|  | ||||
| class SearchWidthCifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, num_classes): | ||||
|     super(SearchWidthCifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|  | ||||
|     self.message     = 'SearchWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes = num_classes | ||||
|     self.channels    = [16] | ||||
|     self.layers      = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     self.InShape     = None | ||||
|     for stage in range(3): | ||||
|       for iL in range(layer_blocks): | ||||
|         iC     = self.channels[-1] | ||||
|         planes = 16 * (2**stage) | ||||
|         stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||
|    | ||||
|     self.avgpool     = nn.AvgPool2d(8) | ||||
|     self.classifier  = nn.Linear(module.out_dim, num_classes) | ||||
|     self.InShape     = None | ||||
|     self.tau         = -1 | ||||
|     self.search_mode = 'basic' | ||||
|     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|      | ||||
|     # parameters for width | ||||
|     self.Ranges = [] | ||||
|     self.layer2indexRange = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       start_index = len(self.Ranges) | ||||
|       self.Ranges += layer.get_range() | ||||
|       self.layer2indexRange.append( (start_index, len(self.Ranges)) ) | ||||
|     assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth) | ||||
|  | ||||
|     self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None)))) | ||||
|     nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def arch_parameters(self): | ||||
|     return [self.width_attentions] | ||||
|  | ||||
|   def base_parameters(self): | ||||
|     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) | ||||
|  | ||||
|   def get_flop(self, mode, config_dict, extra_info): | ||||
|     if config_dict is not None: config_dict = config_dict.copy() | ||||
|     #weights = [F.softmax(x, dim=0) for x in self.width_attentions] | ||||
|     channels = [3] | ||||
|     for i, weight in enumerate(self.width_attentions): | ||||
|       if mode == 'genotype': | ||||
|         with torch.no_grad(): | ||||
|           probe = nn.functional.softmax(weight, dim=0) | ||||
|           C = self.Ranges[i][ torch.argmax(probe).item() ] | ||||
|       elif mode == 'max': | ||||
|         C = self.Ranges[i][-1] | ||||
|       elif mode == 'fix': | ||||
|         C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||
|       elif mode == 'random': | ||||
|         assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info) | ||||
|         with torch.no_grad(): | ||||
|           prob = nn.functional.softmax(weight, dim=0) | ||||
|           approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||
|           for j in range(prob.size(0)): | ||||
|             prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2) | ||||
|           C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ] | ||||
|       else: | ||||
|         raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|       channels.append( C ) | ||||
|     flop = 0 | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       s, e = self.layer2indexRange[i] | ||||
|       xchl = tuple( channels[s:e+1] ) | ||||
|       flop+= layer.get_flops(xchl) | ||||
|     # the last fc layer | ||||
|     flop += channels[-1] * self.classifier.out_features | ||||
|     if config_dict is None: | ||||
|       return flop / 1e6 | ||||
|     else: | ||||
|       config_dict['xchannels']  = channels | ||||
|       config_dict['super_type'] = 'infer-width' | ||||
|       config_dict['estimated_FLOP'] = flop / 1e6 | ||||
|       return flop / 1e6, config_dict | ||||
|  | ||||
|   def get_arch_info(self): | ||||
|     string = "for width, there are {:} attention probabilities.".format(len(self.width_attentions)) | ||||
|     discrepancy = [] | ||||
|     with torch.no_grad(): | ||||
|       for i, att in enumerate(self.width_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:52s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|     return string, discrepancy | ||||
|  | ||||
|   def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio) | ||||
|     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, inputs): | ||||
|     flop_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|     selected_widths, selected_probs = select2withP(self.width_attentions, self.tau) | ||||
|     with torch.no_grad(): | ||||
|       selected_widths = selected_widths.cpu() | ||||
|  | ||||
|     x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       selected_w_index = selected_widths[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       selected_w_probs = selected_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       layer_prob       = flop_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) ) | ||||
|       last_channel_idx += layer.num_conv | ||||
|       flops.append( expected_flop ) | ||||
|     flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = linear_forward(features, self.classifier) | ||||
|     return logits, torch.stack( [sum(flops)] ) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										483
									
								
								lib/models/shape_searchs/SearchImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										483
									
								
								lib/models/shape_searchs/SearchImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,483 @@ | ||||
| import math, torch | ||||
| from collections import OrderedDict | ||||
| from bisect import bisect_right | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
| from .SoftSelect      import select2withP, ChannelWiseInter | ||||
| from .SoftSelect      import linear_forward | ||||
| from .SoftSelect      import get_width_choices | ||||
|  | ||||
|  | ||||
| def get_depth_choices(layers): | ||||
|   min_depth = min(layers) | ||||
|   info = {'num': min_depth} | ||||
|   for i, depth in enumerate(layers): | ||||
|     choices = [] | ||||
|     for j in range(1, min_depth+1): | ||||
|       choices.append( int( float(depth)*j/min_depth ) ) | ||||
|     info[i] = choices | ||||
|   return info | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|   iC = conv.in_channels | ||||
|   fill_size = list(inputs.size()) | ||||
|   fill_size[1] = iC - fill_size[1] | ||||
|   filled  = torch.zeros(fill_size, device=inputs.device) | ||||
|   xinputs = torch.cat((inputs, filled), dim=1) | ||||
|   outputs = conv(xinputs) | ||||
|   selecteds = [outputs[:,:oC] for oC in choices] | ||||
|   return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu, last_max_pool=False): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     self.InShape  = None | ||||
|     self.OutShape = None | ||||
|     self.choices  = get_width_choices(nOut) | ||||
|     self.register_buffer('choices_tensor', torch.Tensor( self.choices )) | ||||
|  | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     #if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     #else       : self.bn  = None | ||||
|     self.has_bn = has_bn | ||||
|     self.BNs  = nn.ModuleList() | ||||
|     for i, _out in enumerate(self.choices): | ||||
|       self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|    | ||||
|     if last_max_pool: self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||||
|     else            : self.maxpool = None | ||||
|     self.in_dim   = nIn | ||||
|     self.out_dim  = nOut | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_flops(self, channels, check_range=True, divide=1): | ||||
|     iC, oC = channels | ||||
|     if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels) | ||||
|     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape) | ||||
|     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape) | ||||
|     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups) | ||||
|     all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|     flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|     if self.conv.bias is not None: flops += all_positions / divide | ||||
|     return flops | ||||
|  | ||||
|   def get_range(self): | ||||
|     return [self.choices] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|     index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|     probability = torch.squeeze(probability) | ||||
|     assert len(index) == 2, 'invalid length : {:}'.format(index) | ||||
|     # compute expected flop | ||||
|     #coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|     expected_outC = (self.choices_tensor * probability).sum() | ||||
|     expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     # convolutional layer | ||||
|     out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|     out_bns   = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|     # merge | ||||
|     out_channel = max([x.size(1) for x in out_bns]) | ||||
|     outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|     outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|     out  = outA * prob[0] + outB * prob[1] | ||||
|     #out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|     if self.relu   : out = self.relu( out ) | ||||
|     if self.maxpool: out = self.maxpool(out) | ||||
|     return out, expected_outC, expected_flop | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.has_bn:out= self.BNs[-1]( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     if self.InShape is None: | ||||
|       self.InShape  = (inputs.size(-2), inputs.size(-1)) | ||||
|       self.OutShape = (out.size(-2)   , out.size(-1)) | ||||
|     if self.maxpool: out = self.maxpool(out) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   expansion = 1 | ||||
|   num_conv  = 2 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=True, has_relu=False) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True, has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_a.get_range() + self.conv_b.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 3, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_a.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_b.get_flops([channels[1], channels[2]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_C = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 | ||||
|     #import pdb; pdb.set_trace() | ||||
|     out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC  , probability[0], indexes[0], probs[0]) ) | ||||
|     out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[1], indexes[1], probs[1]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_b) | ||||
|     return out, expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c]) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, basicblock) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=True, has_relu=False) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True, has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes * self.expansion | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 4, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) | ||||
|     flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_D = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_D = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, bottleneck) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 | ||||
|     out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC    , probability[0], indexes[0], probs[0]) ) | ||||
|     out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) ) | ||||
|     out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[2], indexes[2], probs[2]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_1x4) | ||||
|     return out, expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c]) | ||||
|  | ||||
|  | ||||
|  | ||||
| class SearchShapeImagenetResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, layers, deep_stem, num_classes): | ||||
|     super(SearchShapeImagenetResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'BasicBlock': | ||||
|       block = ResNetBasicblock | ||||
|     elif block_name == 'Bottleneck': | ||||
|       block = ResNetBottleneck | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|      | ||||
|     self.message      = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(sum(layers)*block.num_conv, layers) | ||||
|     self.num_classes  = num_classes | ||||
|     if not deep_stem: | ||||
|       self.layers       = nn.ModuleList( [ ConvBNReLU(3, 64, 7, 2, 3, False, has_avg=False, has_bn=True, has_relu=True, last_max_pool=True) ] ) | ||||
|       self.channels     = [64] | ||||
|     else: | ||||
|       self.layers       = nn.ModuleList( [ ConvBNReLU(3, 32, 3, 2, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|                                           ,ConvBNReLU(32,64, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True, last_max_pool=True) ] ) | ||||
|       self.channels     = [32, 64] | ||||
|  | ||||
|     meta_depth_info   = get_depth_choices(layers) | ||||
|     self.InShape      = None | ||||
|     self.depth_info   = OrderedDict() | ||||
|     self.depth_at_i   = OrderedDict() | ||||
|     for stage, layer_blocks in enumerate(layers): | ||||
|       cur_block_choices = meta_depth_info[stage] | ||||
|       assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks) | ||||
|       block_choices, xstart = [], len(self.layers) | ||||
|       for iL in range(layer_blocks): | ||||
|         iC     = self.channels[-1] | ||||
|         planes = 64 * (2**stage) | ||||
|         stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||
|         # added for depth | ||||
|         layer_index = len(self.layers) - 1 | ||||
|         if iL + 1 in cur_block_choices: block_choices.append( layer_index ) | ||||
|         if iL + 1 == layer_blocks: | ||||
|           self.depth_info[layer_index] = {'choices': block_choices, | ||||
|                                           'stage'  : stage, | ||||
|                                           'xstart' : xstart} | ||||
|     self.depth_info_list = [] | ||||
|     for xend, info in self.depth_info.items(): | ||||
|       self.depth_info_list.append( (xend, info) ) | ||||
|       xstart, xstage = info['xstart'], info['stage'] | ||||
|       for ilayer in range(xstart, xend+1): | ||||
|         idx = bisect_right(info['choices'], ilayer-1) | ||||
|         self.depth_at_i[ilayer] = (xstage, idx) | ||||
|  | ||||
|     self.avgpool     = nn.AdaptiveAvgPool2d((1,1)) | ||||
|     self.classifier  = nn.Linear(module.out_dim, num_classes) | ||||
|     self.InShape     = None | ||||
|     self.tau         = -1 | ||||
|     self.search_mode = 'basic' | ||||
|     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|      | ||||
|     # parameters for width | ||||
|     self.Ranges = [] | ||||
|     self.layer2indexRange = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       start_index = len(self.Ranges) | ||||
|       self.Ranges += layer.get_range() | ||||
|       self.layer2indexRange.append( (start_index, len(self.Ranges)) ) | ||||
|  | ||||
|     self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None)))) | ||||
|     self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(len(layers), meta_depth_info['num']))) | ||||
|     nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|     nn.init.normal_(self.depth_attentions, 0, 0.01) | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def arch_parameters(self, LR=None): | ||||
|     if LR is None: | ||||
|       return [self.width_attentions, self.depth_attentions] | ||||
|     else: | ||||
|       return [ | ||||
|                {"params": self.width_attentions, "lr": LR}, | ||||
|                {"params": self.depth_attentions, "lr": LR}, | ||||
|              ] | ||||
|  | ||||
|   def base_parameters(self): | ||||
|     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) | ||||
|  | ||||
|   def get_flop(self, mode, config_dict, extra_info): | ||||
|     if config_dict is not None: config_dict = config_dict.copy() | ||||
|     # select channels  | ||||
|     channels = [3] | ||||
|     for i, weight in enumerate(self.width_attentions): | ||||
|       if mode == 'genotype': | ||||
|         with torch.no_grad(): | ||||
|           probe = nn.functional.softmax(weight, dim=0) | ||||
|           C = self.Ranges[i][ torch.argmax(probe).item() ] | ||||
|       else: | ||||
|         raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|       channels.append( C ) | ||||
|     # select depth | ||||
|     if mode == 'genotype': | ||||
|       with torch.no_grad(): | ||||
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | ||||
|     else: | ||||
|       raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|     selected_layers = [] | ||||
|     for choice, xvalue in zip(choices, self.depth_info_list): | ||||
|       xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1 | ||||
|       selected_layers.append(xtemp) | ||||
|     flop = 0 | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       s, e = self.layer2indexRange[i] | ||||
|       xchl = tuple( channels[s:e+1] ) | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         if xatti <= choices[xstagei]: # leave this depth | ||||
|           flop+= layer.get_flops(xchl) | ||||
|         else: | ||||
|           flop+= 0 # do not use this layer | ||||
|       else: | ||||
|         flop+= layer.get_flops(xchl) | ||||
|     # the last fc layer | ||||
|     flop += channels[-1] * self.classifier.out_features | ||||
|     if config_dict is None: | ||||
|       return flop / 1e6 | ||||
|     else: | ||||
|       config_dict['xchannels']  = channels | ||||
|       config_dict['xblocks']    = selected_layers | ||||
|       config_dict['super_type'] = 'infer-shape' | ||||
|       config_dict['estimated_FLOP'] = flop / 1e6 | ||||
|       return flop / 1e6, config_dict | ||||
|  | ||||
|   def get_arch_info(self): | ||||
|     string = "for depth and width, there are {:} + {:} attention probabilities.".format(len(self.depth_attentions), len(self.width_attentions)) | ||||
|     string+= '\n{:}'.format(self.depth_info) | ||||
|     discrepancy = [] | ||||
|     with torch.no_grad(): | ||||
|       for i, att in enumerate(self.depth_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:17s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|       string += '\n-----------------------------------------------' | ||||
|       for i, att in enumerate(self.width_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:52s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|     return string, discrepancy | ||||
|  | ||||
|   def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio) | ||||
|     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, inputs): | ||||
|     flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|     flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|     flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] ) | ||||
|     selected_widths, selected_width_probs = select2withP(self.width_attentions, self.tau) | ||||
|     selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | ||||
|     with torch.no_grad(): | ||||
|       selected_widths = selected_widths.cpu() | ||||
|  | ||||
|     x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|     feature_maps = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       selected_w_index = selected_widths     [last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       selected_w_probs = selected_width_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       layer_prob       = flop_width_probs    [last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) ) | ||||
|       feature_maps.append( x ) | ||||
|       last_channel_idx += layer.num_conv | ||||
|       if i in self.depth_info: # aggregate the information | ||||
|         choices = self.depth_info[i]['choices'] | ||||
|         xstagei = self.depth_info[i]['stage'] | ||||
|         #print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist())) | ||||
|         #for A, W in zip(choices, selected_depth_probs[xstagei]): | ||||
|         #  print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W)) | ||||
|         possible_tensors = [] | ||||
|         max_C = max( feature_maps[A].size(1) for A in choices ) | ||||
|         for tempi, A in enumerate(choices): | ||||
|           xtensor = ChannelWiseInter(feature_maps[A], max_C) | ||||
|           possible_tensors.append( xtensor ) | ||||
|         weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) ) | ||||
|         x = weighted_sum | ||||
|          | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop | ||||
|       else: | ||||
|         x_expected_flop = expected_flop | ||||
|       flops.append( x_expected_flop ) | ||||
|     flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = linear_forward(features, self.classifier) | ||||
|     return logits, torch.stack( [sum(flops)] ) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										108
									
								
								lib/models/shape_searchs/SoftSelect.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										108
									
								
								lib/models/shape_searchs/SoftSelect.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,108 @@ | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def select2withP(logits, tau, just_prob=False, num=2, eps=1e-7): | ||||
|   if tau <= 0: | ||||
|     new_logits = logits | ||||
|     probs = nn.functional.softmax(new_logits, dim=1) | ||||
|   else       : | ||||
|     while True: # a trick to avoid the gumbels bug | ||||
|       gumbels = -torch.empty_like(logits).exponential_().log() | ||||
|       new_logits = (logits.log_softmax(dim=1) + gumbels) / tau | ||||
|       probs = nn.functional.softmax(new_logits, dim=1) | ||||
|       if (not torch.isinf(gumbels).any()) and (not torch.isinf(probs).any()) and (not torch.isnan(probs).any()): break | ||||
|  | ||||
|   if just_prob: return probs | ||||
|  | ||||
|   #with torch.no_grad(): # add eps for unexpected torch error | ||||
|   #  probs = nn.functional.softmax(new_logits, dim=1) | ||||
|   #  selected_index = torch.multinomial(probs + eps, 2, False) | ||||
|   with torch.no_grad(): # add eps for unexpected torch error | ||||
|     probs          = probs.cpu() | ||||
|     selected_index = torch.multinomial(probs + eps, num, False).to(logits.device) | ||||
|   selected_logit = torch.gather(new_logits, 1, selected_index) | ||||
|   selcted_probs  = nn.functional.softmax(selected_logit, dim=1) | ||||
|   return selected_index, selcted_probs | ||||
|  | ||||
|  | ||||
| def ChannelWiseInter(inputs, oC, mode='v2'): | ||||
|   if mode == 'v1': | ||||
|     return ChannelWiseInterV1(inputs, oC) | ||||
|   elif mode == 'v2': | ||||
|     return ChannelWiseInterV2(inputs, oC) | ||||
|   else: | ||||
|     raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|  | ||||
|  | ||||
| def ChannelWiseInterV1(inputs, oC): | ||||
|   assert inputs.dim() == 4, 'invalid dimension : {:}'.format(inputs.size()) | ||||
|   def start_index(a, b, c): | ||||
|     return int( math.floor(float(a * c) / b) ) | ||||
|   def end_index(a, b, c): | ||||
|     return int( math.ceil(float((a + 1) * c) / b) ) | ||||
|   batch, iC, H, W = inputs.size() | ||||
|   outputs = torch.zeros((batch, oC, H, W), dtype=inputs.dtype, device=inputs.device) | ||||
|   if iC == oC: return inputs | ||||
|   for ot in range(oC): | ||||
|     istartT, iendT = start_index(ot, oC, iC), end_index(ot, oC, iC) | ||||
|     values = inputs[:, istartT:iendT].mean(dim=1)  | ||||
|     outputs[:, ot, :, :] = values | ||||
|   return outputs | ||||
|  | ||||
|  | ||||
| def ChannelWiseInterV2(inputs, oC): | ||||
|   assert inputs.dim() == 4, 'invalid dimension : {:}'.format(inputs.size()) | ||||
|   batch, C, H, W = inputs.size() | ||||
|   if C == oC: return inputs | ||||
|   else      : return nn.functional.adaptive_avg_pool3d(inputs, (oC,H,W)) | ||||
|   #inputs_5D = inputs.view(batch, 1, C, H, W) | ||||
|   #otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'area', None) | ||||
|   #otputs    = otputs_5D.view(batch, oC, H, W) | ||||
|   #otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'trilinear', False) | ||||
|   #return otputs | ||||
|  | ||||
|  | ||||
| def linear_forward(inputs, linear): | ||||
|   if linear is None: return inputs | ||||
|   iC = inputs.size(1) | ||||
|   weight = linear.weight[:, :iC] | ||||
|   if linear.bias is None: bias = None | ||||
|   else                  : bias = linear.bias | ||||
|   return nn.functional.linear(inputs, weight, bias) | ||||
|  | ||||
|  | ||||
| def get_width_choices(nOut): | ||||
|   xsrange = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] | ||||
|   if nOut is None: | ||||
|     return len(xsrange) | ||||
|   else: | ||||
|     Xs = [int(nOut * i) for i in xsrange] | ||||
|     #xs = [ int(nOut * i // 10) for i in range(2, 11)] | ||||
|     #Xs = [x for i, x in enumerate(xs) if i+1 == len(xs) or xs[i+1] > x+1] | ||||
|     Xs = sorted( list( set(Xs) ) ) | ||||
|     return tuple(Xs) | ||||
|  | ||||
|  | ||||
| def get_depth_choices(nDepth): | ||||
|   if nDepth is None: | ||||
|     return 3 | ||||
|   else: | ||||
|     assert nDepth >= 3, 'nDepth should be greater than 2 vs {:}'.format(nDepth) | ||||
|     if nDepth == 1  : return (1, 1, 1) | ||||
|     elif nDepth == 2: return (1, 1, 2) | ||||
|     elif nDepth >= 3: | ||||
|       return (nDepth//3, nDepth*2//3, nDepth) | ||||
|     else: | ||||
|       raise ValueError('invalid Depth : {:}'.format(nDepth)) | ||||
|  | ||||
|  | ||||
| def drop_path(x, drop_prob): | ||||
|   if drop_prob > 0.: | ||||
|     keep_prob = 1. - drop_prob | ||||
|     mask = x.new_zeros(x.size(0), 1, 1, 1) | ||||
|     mask = mask.bernoulli_(keep_prob) | ||||
|     x = x * (mask / keep_prob) | ||||
|     #x.div_(keep_prob) | ||||
|     #x.mul_(mask) | ||||
|   return x | ||||
							
								
								
									
										4
									
								
								lib/models/shape_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								lib/models/shape_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,4 @@ | ||||
| from .SearchCifarResNet_width import SearchWidthCifarResNet | ||||
| from .SearchCifarResNet_depth import SearchDepthCifarResNet | ||||
| from .SearchCifarResNet       import SearchShapeCifarResNet | ||||
| from .SearchImagenetResNet    import SearchShapeImagenetResNet | ||||
							
								
								
									
										17
									
								
								lib/models/shape_searchs/test.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										17
									
								
								lib/models/shape_searchs/test.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,17 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from SoftSelect import ChannelWiseInter | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   tensors = torch.rand((16, 128, 7, 7)) | ||||
|    | ||||
|   for oc in range(200, 210): | ||||
|     out_v1  = ChannelWiseInter(tensors, oc, 'v1') | ||||
|     out_v2  = ChannelWiseInter(tensors, oc, 'v2') | ||||
|     assert (out_v1 == out_v2).any().item() == 1 | ||||
|   for oc in range(48, 160): | ||||
|     out_v1  = ChannelWiseInter(tensors, oc, 'v1') | ||||
|     out_v2  = ChannelWiseInter(tensors, oc, 'v2') | ||||
|     assert (out_v1 == out_v2).any().item() == 1 | ||||
		Reference in New Issue
	
	Block a user