Update Warmup
This commit is contained in:
		| @@ -2,8 +2,8 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| # Here, we utilized three techniques to search for the number of channels: | ||||
| # - feature interpaltion from "Network Pruning via Transformable Architecture Search, NeurIPS 2019" | ||||
| # - masking + GumbelSoftmax from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020" | ||||
| # - channel-wise interpaltion from "Network Pruning via Transformable Architecture Search, NeurIPS 2019" | ||||
| # - masking + Gumbel-Softmax from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020" | ||||
| # - masking + sampling from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020" | ||||
| from typing import List, Text, Any | ||||
| import random, torch | ||||
| @@ -55,10 +55,10 @@ class GenericNAS301Model(nn.Module): | ||||
|     assert algo in ['fbv2', 'tunas', 'tas'], 'invalid algo : {:}'.format(algo) | ||||
|     self._algo = algo | ||||
|     self._arch_parameters = nn.Parameter(1e-3*torch.randn(self._max_num_Cs, len(self._candidate_Cs))) | ||||
|     if algo == 'fbv2' or algo == 'tunas': | ||||
|       self.register_buffer('_masks', torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs))) | ||||
|       for i in range(len(self._candidate_Cs)): | ||||
|         self._masks.data[i, :self._candidate_Cs[i]] = 1 | ||||
|     # if algo == 'fbv2' or algo == 'tunas': | ||||
|     self.register_buffer('_masks', torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs))) | ||||
|     for i in range(len(self._candidate_Cs)): | ||||
|       self._masks.data[i, :self._candidate_Cs[i]] = 1 | ||||
|    | ||||
|   @property | ||||
|   def tau(self): | ||||
|   | ||||
		Reference in New Issue
	
	Block a user