Update notebook
This commit is contained in:
		
							
								
								
									
										3
									
								
								.gitmodules
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										3
									
								
								.gitmodules
									
									
									
									
										vendored
									
									
								
							| @@ -1,3 +1,6 @@ | ||||
| [submodule "qlib-git"] | ||||
| 	path = .latent-data/qlib | ||||
| 	url = git@github.com:microsoft/qlib.git | ||||
| [submodule ".latent-data/qlib"] | ||||
| 	path = .latent-data/qlib | ||||
| 	url = git@github.com:microsoft/qlib.git | ||||
|   | ||||
							
								
								
									
										1
									
								
								.latent-data/qlib
									
									
									
									
									
										Submodule
									
								
							
							
								
								
								
								
								
							
						
						
									
										1
									
								
								.latent-data/qlib
									
									
									
									
									
										Submodule
									
								
							 Submodule .latent-data/qlib added at a96f0c2e5f
									
								
							| @@ -113,7 +113,7 @@ If you find that this project helps your research, please consider citing the re | ||||
|   note    = {\mbox{doi}:\url{10.1109/TPAMI.2021.3054824}} | ||||
| } | ||||
| @inproceedings{dong2020nasbench201, | ||||
|   title     = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search}, | ||||
|   title     = {{NAS-Bench-201}: Extending the Scope of Reproducible Neural Architecture Search}, | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   booktitle = {International Conference on Learning Representations (ICLR)}, | ||||
|   url       = {https://openreview.net/forum?id=HJxyZkBKDr}, | ||||
|   | ||||
| @@ -107,7 +107,7 @@ Some methods use knowledge distillation (KD), which require pre-trained models. | ||||
|   note    = {\mbox{doi}:\url{10.1109/TPAMI.2021.3054824}} | ||||
| } | ||||
| @inproceedings{dong2020nasbench201, | ||||
|   title     = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search}, | ||||
|   title     = {{NAS-Bench-201}: Extending the Scope of Reproducible Neural Architecture Search}, | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   booktitle = {International Conference on Learning Representations (ICLR)}, | ||||
|   url       = {https://openreview.net/forum?id=HJxyZkBKDr}, | ||||
|   | ||||
							
								
								
									
										91
									
								
								notebooks/NATS-Bench/issue-96.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										91
									
								
								notebooks/NATS-Bench/issue-96.ipynb
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,91 @@ | ||||
| { | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 1, | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "[2021-03-01 12:28:12] Try to use the default NATS-Bench (topology) path from fast_mode=True and path=None.\n" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "from nats_bench import create\n", | ||||
|     "import numpy as np\n", | ||||
|     "\n", | ||||
|     "def get_correlation(A, B):\n", | ||||
|     "    return float(np.corrcoef(A, B)[0,1])\n", | ||||
|     "\n", | ||||
|     "# Create the API for tologoy search space\n", | ||||
|     "api = create(None, 'tss', fast_mode=True, verbose=False)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 2, | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "There are 15625 architectures on the topology search space\n" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "print('There are {:} architectures on the topology search space'.format(len(api)))\n", | ||||
|     "accuracies_12, accuracies_200 = [], []\n", | ||||
|     "for i, arch in enumerate(api):\n", | ||||
|     "    info_a = api.get_more_info(i, dataset='cifar10-valid', hp='12', is_random=False)\n", | ||||
|     "    accuracies_12.append(info_a['valid-accuracy'])\n", | ||||
|     "\n", | ||||
|     "    info_b = api.get_more_info(i, dataset='cifar10-valid', hp='200', is_random=False)\n", | ||||
|     "    accuracies_200.append(info_b['test-accuracy'])" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 4, | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "[CIFAR-10] The correlation between 12-epoch validation accuracy and 200-epoch test accuracy is: 91.18%\n" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "correlation = get_correlation(accuracies_12, accuracies_200)\n", | ||||
|     "print('[CIFAR-10] The correlation between 12-epoch validation accuracy and 200-epoch test accuracy is: {:.2f}%'.format(correlation * 100))" | ||||
|    ] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   "kernelspec": { | ||||
|    "display_name": "Python 3", | ||||
|    "language": "python", | ||||
|    "name": "python3" | ||||
|   }, | ||||
|   "language_info": { | ||||
|    "codemirror_mode": { | ||||
|     "name": "ipython", | ||||
|     "version": 3 | ||||
|    }, | ||||
|    "file_extension": ".py", | ||||
|    "mimetype": "text/x-python", | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.8.3" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  "nbformat_minor": 4 | ||||
| } | ||||
		Reference in New Issue
	
	Block a user