update GDAS
This commit is contained in:
		| @@ -88,7 +88,9 @@ class TinyNetworkGDAS(nn.Module): | ||||
|       index   = probs.max(-1, keepdim=True)[1] | ||||
|       one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|       hardwts = one_h - probs.detach() + probs | ||||
|       if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): continue | ||||
|       if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): | ||||
|         continue | ||||
|       else: break | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|   | ||||
| @@ -1,17 +0,0 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| from .search_model_darts_v1 import TinyNetworkDartsV1 | ||||
| from .search_model_darts_v2 import TinyNetworkDartsV2 | ||||
| from .search_model_gdas     import TinyNetworkGDAS | ||||
| from .search_model_setn     import TinyNetworkSETN | ||||
| from .search_model_enas     import TinyNetworkENAS | ||||
| from .search_model_random   import TinyNetworkRANDOM | ||||
| from .genotypes             import Structure as CellStructure, architectures as CellArchitectures | ||||
|  | ||||
| nas_super_nets = {'DARTS-V1': TinyNetworkDartsV1, | ||||
|                   'DARTS-V2': TinyNetworkDartsV2, | ||||
|                   'GDAS'    : TinyNetworkGDAS, | ||||
|                   'SETN'    : TinyNetworkSETN, | ||||
|                   'ENAS'    : TinyNetworkENAS, | ||||
|                   'RANDOM'  : TinyNetworkRANDOM} | ||||
| @@ -1,12 +0,0 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import torch | ||||
| from search_model_enas_utils import Controller | ||||
|  | ||||
| def main(): | ||||
|   controller = Controller(6, 4) | ||||
|   predictions = controller() | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   main() | ||||
| @@ -1,197 +0,0 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| from copy import deepcopy | ||||
|  | ||||
|  | ||||
|  | ||||
| def get_combination(space, num): | ||||
|   combs = [] | ||||
|   for i in range(num): | ||||
|     if i == 0: | ||||
|       for func in space: | ||||
|         combs.append( [(func, i)] ) | ||||
|     else: | ||||
|       new_combs = [] | ||||
|       for string in combs: | ||||
|         for func in space: | ||||
|           xstring = string + [(func, i)] | ||||
|           new_combs.append( xstring ) | ||||
|       combs = new_combs | ||||
|   return combs | ||||
|    | ||||
|  | ||||
|  | ||||
| class Structure: | ||||
|  | ||||
|   def __init__(self, genotype): | ||||
|     assert isinstance(genotype, list) or isinstance(genotype, tuple), 'invalid class of genotype : {:}'.format(type(genotype)) | ||||
|     self.node_num = len(genotype) + 1 | ||||
|     self.nodes    = [] | ||||
|     self.node_N   = [] | ||||
|     for idx, node_info in enumerate(genotype): | ||||
|       assert isinstance(node_info, list) or isinstance(node_info, tuple), 'invalid class of node_info : {:}'.format(type(node_info)) | ||||
|       assert len(node_info) >= 1, 'invalid length : {:}'.format(len(node_info)) | ||||
|       for node_in in node_info: | ||||
|         assert isinstance(node_in, list) or isinstance(node_in, tuple), 'invalid class of in-node : {:}'.format(type(node_in)) | ||||
|         assert len(node_in) == 2 and node_in[1] <= idx, 'invalid in-node : {:}'.format(node_in) | ||||
|       self.node_N.append( len(node_info) ) | ||||
|       self.nodes.append( tuple(deepcopy(node_info)) ) | ||||
|  | ||||
|   def tolist(self, remove_str): | ||||
|     # convert this class to the list, if remove_str is 'none', then remove the 'none' operation. | ||||
|     # note that we re-order the input node in this function | ||||
|     # return the-genotype-list and success [if unsuccess, it is not a connectivity] | ||||
|     genotypes = [] | ||||
|     for node_info in self.nodes: | ||||
|       node_info = list( node_info ) | ||||
|       node_info = sorted(node_info, key=lambda x: (x[1], x[0])) | ||||
|       node_info = tuple(filter(lambda x: x[0] != remove_str, node_info)) | ||||
|       if len(node_info) == 0: return None, False | ||||
|       genotypes.append( node_info ) | ||||
|     return genotypes, True | ||||
|  | ||||
|   def node(self, index): | ||||
|     assert index > 0 and index <= len(self), 'invalid index={:} < {:}'.format(index, len(self)) | ||||
|     return self.nodes[index] | ||||
|  | ||||
|   def tostr(self): | ||||
|     strings = [] | ||||
|     for node_info in self.nodes: | ||||
|       string = '|'.join([x[0]+'~{:}'.format(x[1]) for x in node_info]) | ||||
|       string = '|{:}|'.format(string) | ||||
|       strings.append( string ) | ||||
|     return '+'.join(strings) | ||||
|  | ||||
|   def check_valid(self): | ||||
|     nodes = {0: True} | ||||
|     for i, node_info in enumerate(self.nodes): | ||||
|       sums = [] | ||||
|       for op, xin in node_info: | ||||
|         if op == 'none' or nodes[xin] == False: x = False | ||||
|         else: x = True | ||||
|         sums.append( x ) | ||||
|       nodes[i+1] = sum(sums) > 0 | ||||
|     return nodes[len(self.nodes)] | ||||
|  | ||||
|   def to_unique_str(self, consider_zero=False): | ||||
|     # this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation | ||||
|     # two operations are special, i.e., none and skip_connect | ||||
|     nodes = {0: '0'} | ||||
|     for i_node, node_info in enumerate(self.nodes): | ||||
|       cur_node = [] | ||||
|       for op, xin in node_info: | ||||
|         if consider_zero: | ||||
|           if op == 'none' or nodes[xin] == '#': x = '#' # zero | ||||
|           elif op == 'skip_connect': x = nodes[xin] | ||||
|           else: x = '('+nodes[xin]+')' + '@{:}'.format(op) | ||||
|         else: | ||||
|           if op == 'skip_connect': x = nodes[xin] | ||||
|           else: x = '('+nodes[xin]+')' + '@{:}'.format(op) | ||||
|         cur_node.append(x) | ||||
|       nodes[i_node+1] = '+'.join( sorted(cur_node) ) | ||||
|     return nodes[ len(self.nodes) ] | ||||
|  | ||||
|   def check_valid_op(self, op_names): | ||||
|     for node_info in self.nodes: | ||||
|       for inode_edge in node_info: | ||||
|         #assert inode_edge[0] in op_names, 'invalid op-name : {:}'.format(inode_edge[0]) | ||||
|         if inode_edge[0] not in op_names: return False | ||||
|     return True | ||||
|  | ||||
|   def __repr__(self): | ||||
|     return ('{name}({node_num} nodes with {node_info})'.format(name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__)) | ||||
|  | ||||
|   def __len__(self): | ||||
|     return len(self.nodes) + 1 | ||||
|  | ||||
|   def __getitem__(self, index): | ||||
|     return self.nodes[index] | ||||
|  | ||||
|   @staticmethod | ||||
|   def str2structure(xstr): | ||||
|     assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr)) | ||||
|     nodestrs = xstr.split('+') | ||||
|     genotypes = [] | ||||
|     for i, node_str in enumerate(nodestrs): | ||||
|       inputs = list(filter(lambda x: x != '', node_str.split('|'))) | ||||
|       for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) | ||||
|       inputs = ( xi.split('~') for xi in inputs ) | ||||
|       input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs) | ||||
|       genotypes.append( input_infos ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   @staticmethod | ||||
|   def str2fullstructure(xstr, default_name='none'): | ||||
|     assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr)) | ||||
|     nodestrs = xstr.split('+') | ||||
|     genotypes = [] | ||||
|     for i, node_str in enumerate(nodestrs): | ||||
|       inputs = list(filter(lambda x: x != '', node_str.split('|'))) | ||||
|       for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) | ||||
|       inputs = ( xi.split('~') for xi in inputs ) | ||||
|       input_infos = list( (op, int(IDX)) for (op, IDX) in inputs) | ||||
|       all_in_nodes= list(x[1] for x in input_infos) | ||||
|       for j in range(i): | ||||
|         if j not in all_in_nodes: input_infos.append((default_name, j)) | ||||
|       node_info = sorted(input_infos, key=lambda x: (x[1], x[0])) | ||||
|       genotypes.append( tuple(node_info) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   @staticmethod | ||||
|   def gen_all(search_space, num, return_ori): | ||||
|     assert isinstance(search_space, list) or isinstance(search_space, tuple), 'invalid class of search-space : {:}'.format(type(search_space)) | ||||
|     assert num >= 2, 'There should be at least two nodes in a neural cell instead of {:}'.format(num) | ||||
|     all_archs = get_combination(search_space, 1) | ||||
|     for i, arch in enumerate(all_archs): | ||||
|       all_archs[i] = [ tuple(arch) ] | ||||
|    | ||||
|     for inode in range(2, num): | ||||
|       cur_nodes = get_combination(search_space, inode) | ||||
|       new_all_archs = [] | ||||
|       for previous_arch in all_archs: | ||||
|         for cur_node in cur_nodes: | ||||
|           new_all_archs.append( previous_arch + [tuple(cur_node)] ) | ||||
|       all_archs = new_all_archs | ||||
|     if return_ori: | ||||
|       return all_archs | ||||
|     else: | ||||
|       return [Structure(x) for x in all_archs] | ||||
|  | ||||
|  | ||||
|  | ||||
| ResNet_CODE = Structure( | ||||
|   [(('nor_conv_3x3', 0), ), # node-1  | ||||
|    (('nor_conv_3x3', 1), ), # node-2 | ||||
|    (('skip_connect', 0), ('skip_connect', 2))] # node-3 | ||||
|   ) | ||||
|  | ||||
| AllConv3x3_CODE = Structure( | ||||
|   [(('nor_conv_3x3', 0), ), # node-1  | ||||
|    (('nor_conv_3x3', 0), ('nor_conv_3x3', 1)), # node-2 | ||||
|    (('nor_conv_3x3', 0), ('nor_conv_3x3', 1), ('nor_conv_3x3', 2))] # node-3 | ||||
|   ) | ||||
|  | ||||
| AllFull_CODE = Structure( | ||||
|   [(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0)), # node-1  | ||||
|    (('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1)), # node-2 | ||||
|    (('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1), ('skip_connect', 2), ('nor_conv_1x1', 2), ('nor_conv_3x3', 2), ('avg_pool_3x3', 2))] # node-3 | ||||
|   ) | ||||
|  | ||||
| AllConv1x1_CODE = Structure( | ||||
|   [(('nor_conv_1x1', 0), ), # node-1  | ||||
|    (('nor_conv_1x1', 0), ('nor_conv_1x1', 1)), # node-2 | ||||
|    (('nor_conv_1x1', 0), ('nor_conv_1x1', 1), ('nor_conv_1x1', 2))] # node-3 | ||||
|   ) | ||||
|  | ||||
| AllIdentity_CODE = Structure( | ||||
|   [(('skip_connect', 0), ), # node-1  | ||||
|    (('skip_connect', 0), ('skip_connect', 1)), # node-2 | ||||
|    (('skip_connect', 0), ('skip_connect', 1), ('skip_connect', 2))] # node-3 | ||||
|   ) | ||||
|  | ||||
| architectures = {'resnet'  : ResNet_CODE, | ||||
|                  'all_c3x3': AllConv3x3_CODE, | ||||
|                  'all_c1x1': AllConv1x1_CODE, | ||||
|                  'all_idnt': AllIdentity_CODE, | ||||
|                  'all_full': AllFull_CODE} | ||||
| @@ -1,148 +0,0 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, random, torch | ||||
| import warnings | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import OPS | ||||
|  | ||||
|  | ||||
| class SearchCell(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride, max_nodes, op_names, n_piece): | ||||
|     super(SearchCell, self).__init__() | ||||
|  | ||||
|     self.op_names  = deepcopy(op_names) | ||||
|     self.max_nodes = max_nodes | ||||
|     self.in_dim    = C_in | ||||
|     self.out_dim   = C_out | ||||
|     self.n_piece   = n_piece | ||||
|     self.multi_edges = nn.ModuleList() | ||||
|     for i_piece in range(n_piece): | ||||
|       edges          = nn.ModuleDict() | ||||
|       for i in range(1, max_nodes): | ||||
|         for j in range(i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           if j == 0: xlists = [OPS[op_name](C_in , C_out, stride) for op_name in op_names] | ||||
|           else     : xlists = [OPS[op_name](C_in , C_out,      1) for op_name in op_names] | ||||
|           edges[ node_str ] = nn.ModuleList( xlists ) | ||||
|       self.multi_edges.append( edges ) | ||||
|        | ||||
|     self.edge_keys  = sorted(list(edges.keys())) | ||||
|     self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} | ||||
|     self.num_edges  = len(edges) | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     string = 'info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}, nP={n_piece}'.format(**self.__dict__) | ||||
|     return string | ||||
|  | ||||
|   def forward(self, inputs, weightss): | ||||
|     nodes = [inputs] | ||||
|     with torch.no_grad(): | ||||
|       xmod, xid, argmax = 1, 0, weightss.argmax(dim=1).cpu().tolist() | ||||
|       for i, x in enumerate(argmax): | ||||
|         xid += x * (xmod % self.n_piece) | ||||
|         xmod = (xmod * len(self.op_names)) % self.n_piece | ||||
|       xid = xid % self.n_piece | ||||
|     edges = self.multi_edges[xid] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       inter_nodes = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = weightss[ self.edge2index[node_str] ] | ||||
|         inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(edges[node_str], weights) ) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # GDAS | ||||
|   def forward_gdas(self, inputs, alphas, _tau): | ||||
|     avoid_zero = 0 | ||||
|     while True: | ||||
|       gumbels = -torch.empty_like(alphas).exponential_().log() | ||||
|       logits  = (alphas.log_softmax(dim=1) + gumbels) / _tau | ||||
|       probs   = nn.functional.softmax(logits, dim=1) | ||||
|       index   = probs.max(-1, keepdim=True)[1] | ||||
|       one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|       hardwts = one_h - probs.detach() + probs | ||||
|       if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): | ||||
|         continue # avoid the numerical error | ||||
|       nodes   = [inputs] | ||||
|       for i in range(1, self.max_nodes): | ||||
|         inter_nodes = [] | ||||
|         for j in range(i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           weights  = hardwts[ self.edge2index[node_str] ] | ||||
|           argmaxs  = index[ self.edge2index[node_str] ].item() | ||||
|           weigsum  = sum( weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie] for _ie, edge in enumerate(self.edges[node_str]) ) | ||||
|           inter_nodes.append( weigsum ) | ||||
|         nodes.append( sum(inter_nodes) ) | ||||
|       avoid_zero += 1 | ||||
|       if nodes[-1].sum().item() == 0: | ||||
|         if avoid_zero < 10: continue | ||||
|         else: | ||||
|           warnings.warn('get zero outputs with avoid_zero={:}'.format(avoid_zero)) | ||||
|           break | ||||
|       else: | ||||
|         break | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # joint | ||||
|   def forward_joint(self, inputs, weightss): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       inter_nodes = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = weightss[ self.edge2index[node_str] ] | ||||
|         #aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel() | ||||
|         aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) | ||||
|         inter_nodes.append( aggregation ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # uniform random sampling per iteration | ||||
|   def forward_urs(self, inputs): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       while True: # to avoid select zero for all ops | ||||
|         sops, has_non_zero = [], False | ||||
|         for j in range(i): | ||||
|           node_str   = '{:}<-{:}'.format(i, j) | ||||
|           candidates = self.edges[node_str] | ||||
|           select_op  = random.choice(candidates) | ||||
|           sops.append( select_op ) | ||||
|           if not hasattr(select_op, 'is_zero') or select_op.is_zero == False: has_non_zero=True | ||||
|         if has_non_zero: break | ||||
|       inter_nodes = [] | ||||
|       for j, select_op in enumerate(sops): | ||||
|         inter_nodes.append( select_op(nodes[j]) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # select the argmax | ||||
|   def forward_select(self, inputs, weightss): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       inter_nodes = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = weightss[ self.edge2index[node_str] ] | ||||
|         inter_nodes.append( self.edges[node_str][ weights.argmax().item() ]( nodes[j] ) ) | ||||
|         #inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # forward with a specific structure | ||||
|   def forward_dynamic(self, inputs, structure): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       cur_op_node = structure.nodes[i-1] | ||||
|       inter_nodes = [] | ||||
|       for op_name, j in cur_op_node: | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op_index = self.op_names.index( op_name ) | ||||
|         inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
| @@ -1,93 +0,0 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ######################################################## | ||||
| # DARTS: Differentiable Architecture Search, ICLR 2019 # | ||||
| ######################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkDartsV1(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, n_piece): | ||||
|     super(TinyNetworkDartsV1, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, n_piece) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell(feature, alphas) | ||||
|       else: | ||||
|         feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
| @@ -1,93 +0,0 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ######################################################## | ||||
| # DARTS: Differentiable Architecture Search, ICLR 2019 # | ||||
| ######################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkDartsV2(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space): | ||||
|     super(TinyNetworkDartsV2, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell(feature, alphas) | ||||
|       else: | ||||
|         feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
| @@ -1,94 +0,0 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ########################################################################## | ||||
| # Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 # | ||||
| ########################################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .genotypes        import Structure | ||||
| from .search_model_enas_utils import Controller | ||||
|  | ||||
|  | ||||
| class TinyNetworkENAS(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space): | ||||
|     super(TinyNetworkENAS, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     # to maintain the sampled architecture | ||||
|     self.sampled_arch = None | ||||
|  | ||||
|   def update_arch(self, _arch): | ||||
|     if _arch is None: | ||||
|       self.sampled_arch = None | ||||
|     elif isinstance(_arch, Structure): | ||||
|       self.sampled_arch = _arch | ||||
|     elif isinstance(_arch, (list, tuple)): | ||||
|       genotypes = [] | ||||
|       for i in range(1, self.max_nodes): | ||||
|         xlist = [] | ||||
|         for j in range(i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           op_index = _arch[ self.edge2index[node_str] ] | ||||
|           op_name  = self.op_names[ op_index ] | ||||
|           xlist.append((op_name, j)) | ||||
|         genotypes.append( tuple(xlist) ) | ||||
|       self.sampled_arch = Structure(genotypes) | ||||
|     else: | ||||
|       raise ValueError('invalid type of input architecture : {:}'.format(_arch)) | ||||
|     return self.sampled_arch | ||||
|      | ||||
|   def create_controller(self): | ||||
|     return Controller(len(self.edge2index), len(self.op_names)) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell.forward_dynamic(feature, self.sampled_arch) | ||||
|       else: feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
| @@ -1,55 +0,0 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ########################################################################## | ||||
| # Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 # | ||||
| ########################################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from torch.distributions.categorical import Categorical | ||||
|  | ||||
| class Controller(nn.Module): | ||||
|   # we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py | ||||
|   def __init__(self, num_edge, num_ops, lstm_size=32, lstm_num_layers=2, tanh_constant=2.5, temperature=5.0): | ||||
|     super(Controller, self).__init__() | ||||
|     # assign the attributes | ||||
|     self.num_edge  = num_edge | ||||
|     self.num_ops   = num_ops | ||||
|     self.lstm_size = lstm_size | ||||
|     self.lstm_N    = lstm_num_layers | ||||
|     self.tanh_constant = tanh_constant | ||||
|     self.temperature   = temperature | ||||
|     # create parameters | ||||
|     self.register_parameter('input_vars', nn.Parameter(torch.Tensor(1, 1, lstm_size))) | ||||
|     self.w_lstm = nn.LSTM(input_size=self.lstm_size, hidden_size=self.lstm_size, num_layers=self.lstm_N) | ||||
|     self.w_embd = nn.Embedding(self.num_ops, self.lstm_size) | ||||
|     self.w_pred = nn.Linear(self.lstm_size, self.num_ops) | ||||
|  | ||||
|     nn.init.uniform_(self.input_vars         , -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_embd.weight      , -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_pred.weight      , -0.1, 0.1) | ||||
|  | ||||
|   def forward(self): | ||||
|  | ||||
|     inputs, h0 = self.input_vars, None | ||||
|     log_probs, entropys, sampled_arch = [], [], [] | ||||
|     for iedge in range(self.num_edge): | ||||
|       outputs, h0 = self.w_lstm(inputs, h0) | ||||
|        | ||||
|       logits = self.w_pred(outputs) | ||||
|       logits = logits / self.temperature | ||||
|       logits = self.tanh_constant * torch.tanh(logits) | ||||
|       # distribution | ||||
|       op_distribution = Categorical(logits=logits) | ||||
|       op_index    = op_distribution.sample() | ||||
|       sampled_arch.append( op_index.item() ) | ||||
|  | ||||
|       op_log_prob = op_distribution.log_prob(op_index) | ||||
|       log_probs.append( op_log_prob.view(-1) ) | ||||
|       op_entropy  = op_distribution.entropy() | ||||
|       entropys.append( op_entropy.view(-1) ) | ||||
|        | ||||
|       # obtain the input embedding for the next step | ||||
|       inputs = self.w_embd(op_index) | ||||
|     return torch.sum(torch.cat(log_probs)), torch.sum(torch.cat(entropys)), sampled_arch | ||||
| @@ -1,96 +0,0 @@ | ||||
| ########################################################################### | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||
| ########################################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkGDAS(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space): | ||||
|     super(TinyNetworkGDAS, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.tau        = 10 | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def set_tau(self, tau): | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_tau(self): | ||||
|     return self.tau | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell.forward_gdas(feature, self.arch_parameters, self.tau) | ||||
|       else: | ||||
|         feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
| @@ -1,81 +0,0 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ############################################################################## | ||||
| # Random Search and Reproducibility for Neural Architecture Search, UAI 2019 #  | ||||
| ############################################################################## | ||||
| import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkRANDOM(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space): | ||||
|     super(TinyNetworkRANDOM, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_cache = None | ||||
|      | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def random_genotype(self, set_cache): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op_name  = random.choice( self.op_names ) | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     arch = Structure( genotypes ) | ||||
|     if set_cache: self.arch_cache = arch | ||||
|     return arch | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell.forward_dynamic(feature, self.arch_cache) | ||||
|       else: feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|     return out, logits | ||||
| @@ -1,152 +0,0 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ###################################################################################### | ||||
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 # | ||||
| ###################################################################################### | ||||
| import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
| from .genotypes        import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkSETN(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space): | ||||
|     super(TinyNetworkSETN, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.mode       = 'urs' | ||||
|     self.dynamic_cell = None | ||||
|      | ||||
|   def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|     assert mode in ['urs', 'joint', 'select', 'dynamic'] | ||||
|     self.mode = mode | ||||
|     if mode == 'dynamic': self.dynamic_cell = deepcopy( dynamic_cell ) | ||||
|     else                : self.dynamic_cell = None | ||||
|  | ||||
|   def get_cal_mode(self): | ||||
|     return self.mode | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   def dync_genotype(self, use_random=False): | ||||
|     genotypes = [] | ||||
|     with torch.no_grad(): | ||||
|       alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         if use_random: | ||||
|           op_name  = random.choice(self.op_names) | ||||
|         else: | ||||
|           weights  = alphas_cpu[ self.edge2index[node_str] ] | ||||
|           op_index = torch.multinomial(weights, 1).item() | ||||
|           op_name  = self.op_names[ op_index ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   def get_log_prob(self, arch): | ||||
|     with torch.no_grad(): | ||||
|       logits = nn.functional.log_softmax(self.arch_parameters, dim=-1) | ||||
|     select_logits = [] | ||||
|     for i, node_info in enumerate(arch.nodes): | ||||
|       for op, xin in node_info: | ||||
|         node_str = '{:}<-{:}'.format(i+1, xin) | ||||
|         op_index = self.op_names.index(op) | ||||
|         select_logits.append( logits[self.edge2index[node_str], op_index] ) | ||||
|     return sum(select_logits).item() | ||||
|  | ||||
|  | ||||
|   def return_topK(self, K): | ||||
|     archs = Structure.gen_all(self.op_names, self.max_nodes, False) | ||||
|     pairs = [(self.get_log_prob(arch), arch) for arch in archs] | ||||
|     if K < 0 or K >= len(archs): K = len(archs) | ||||
|     sorted_pairs = sorted(pairs, key=lambda x: -x[0]) | ||||
|     return_pairs = [sorted_pairs[_][1] for _ in range(K)] | ||||
|     return return_pairs | ||||
|  | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     with torch.no_grad(): | ||||
|       alphas_cpu = alphas.detach().cpu() | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         if self.mode == 'urs': | ||||
|           feature = cell.forward_urs(feature) | ||||
|         elif self.mode == 'select': | ||||
|           feature = cell.forward_select(feature, alphas_cpu) | ||||
|         elif self.mode == 'joint': | ||||
|           feature = cell.forward_joint(feature, alphas) | ||||
|         elif self.mode == 'dynamic': | ||||
|           feature = cell.forward_dynamic(feature, self.dynamic_cell) | ||||
|         else: raise ValueError('invalid mode={:}'.format(self.mode)) | ||||
|       else: feature = cell(feature) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
		Reference in New Issue
	
	Block a user