From bb2f405961d73b5bf3a757178793aa1fc7038ca2 Mon Sep 17 00:00:00 2001
From: D-X-Y <280835372@qq.com>
Date: Wed, 15 Jan 2020 00:52:06 +1100
Subject: [PATCH] 102->201 / NAS->autoDL / more configs of TAS / reorganize
docs / fix bugs in NAS baselines
---
README.md | 229 +++++++-----------
.../NeurIPS-2019/ImageNet-ResNet18V1.config | 14 ++
.../NeurIPS-2019/ImageNet-ResNet50V1.config | 14 ++
BASELINE.md => docs/BASELINE.md | 0
docs/CVPR-2019-GDAS.md | 76 ++++++
docs/ICCV-2019-SETN.py | 50 ++++
NAS-Bench-102.md => docs/NAS-Bench-201.md | 105 ++++----
docs/NIPS-2019-TAS.md | 71 ++++++
exps-tf/GDAS.py | 4 +-
.../{NAS-Bench-102 => NAS-Bench-201}/check.py | 8 +-
.../dist-setup.py | 8 +-
.../functions.py | 0
exps/{NAS-Bench-102 => NAS-Bench-201}/main.py | 16 +-
.../statistics.py | 8 +-
.../test-correlation.py | 10 +-
.../visualize.py | 226 +++++++++++++++--
exps/algos/BOHB.py | 13 +-
exps/algos/DARTS-V1.py | 4 +-
exps/algos/DARTS-V2.py | 4 +-
exps/algos/ENAS.py | 8 +-
exps/algos/GDAS.py | 4 +-
exps/algos/RANDOM-NAS.py | 8 +-
exps/algos/RANDOM.py | 6 +-
exps/algos/R_EA.py | 30 +--
exps/algos/SETN.py | 4 +-
exps/algos/reinforce.py | 9 +-
exps/vis/test.py | 12 +-
lib/config_utils/basic_args.py | 2 +-
lib/models/__init__.py | 2 +-
lib/models/cell_infers/cells.py | 5 +
lib/models/cell_infers/tiny_network.py | 4 +
lib/models/cell_operations.py | 5 +-
lib/models/cell_searchs/__init__.py | 4 +-
lib/models/cell_searchs/search_cells.py | 6 +-
lib/models/cell_searchs/search_model_darts.py | 2 +-
lib/models/cell_searchs/search_model_enas.py | 2 +-
lib/models/cell_searchs/search_model_gdas.py | 2 +-
.../cell_searchs/search_model_random.py | 2 +-
lib/models/cell_searchs/search_model_setn.py | 2 +-
lib/{nas_102_api => nas_201_api}/__init__.py | 4 +-
lib/{nas_102_api => nas_201_api}/api.py | 8 +-
lib/nas_infer_model/DXYs/__init__.py | 1 +
lib/nas_infer_model/DXYs/genotypes.py | 3 +
lib/nas_infer_model/__init__.py | 7 +-
lib/tf_models/cell_operations.py | 4 +-
.../{NAS-Bench-102 => NAS-Bench-201}/build.sh | 14 +-
.../meta-gen.sh | 4 +-
.../train-a-net.sh | 6 +-
.../train-models.sh | 4 +-
scripts-search/algos/BOHB.sh | 4 +-
scripts-search/algos/DARTS-V1.sh | 17 +-
scripts-search/algos/DARTS-V2.sh | 17 +-
scripts-search/algos/ENAS.sh | 17 +-
scripts-search/algos/GDAS.sh | 17 +-
scripts-search/algos/GRID-RL.sh | 9 +
scripts-search/algos/R-EA.sh | 4 +-
scripts-search/algos/RANDOM-NAS.sh | 17 +-
scripts-search/algos/REINFORCE.sh | 17 +-
scripts-search/algos/Random.sh | 4 +-
scripts-search/algos/SETN.sh | 17 +-
scripts/nas-infer-train.sh | 1 +
scripts/tas-infer-train.sh | 26 +-
62 files changed, 789 insertions(+), 412 deletions(-)
create mode 100644 configs/NeurIPS-2019/ImageNet-ResNet18V1.config
create mode 100644 configs/NeurIPS-2019/ImageNet-ResNet50V1.config
rename BASELINE.md => docs/BASELINE.md (100%)
create mode 100644 docs/CVPR-2019-GDAS.md
create mode 100644 docs/ICCV-2019-SETN.py
rename NAS-Bench-102.md => docs/NAS-Bench-201.md (72%)
create mode 100644 docs/NIPS-2019-TAS.md
rename exps/{NAS-Bench-102 => NAS-Bench-201}/check.py (93%)
rename exps/{NAS-Bench-102 => NAS-Bench-201}/dist-setup.py (79%)
rename exps/{NAS-Bench-102 => NAS-Bench-201}/functions.py (100%)
rename exps/{NAS-Bench-102 => NAS-Bench-201}/main.py (97%)
rename exps/{NAS-Bench-102 => NAS-Bench-201}/statistics.py (98%)
rename exps/{NAS-Bench-102 => NAS-Bench-201}/test-correlation.py (97%)
rename exps/{NAS-Bench-102 => NAS-Bench-201}/visualize.py (71%)
rename lib/{nas_102_api => nas_201_api}/__init__.py (75%)
rename lib/{nas_102_api => nas_201_api}/api.py (99%)
rename scripts-search/{NAS-Bench-102 => NAS-Bench-201}/build.sh (57%)
rename scripts-search/{NAS-Bench-102 => NAS-Bench-201}/meta-gen.sh (68%)
rename scripts-search/{NAS-Bench-102 => NAS-Bench-201}/train-a-net.sh (83%)
rename scripts-search/{NAS-Bench-102 => NAS-Bench-201}/train-models.sh (91%)
create mode 100644 scripts-search/algos/GRID-RL.sh
diff --git a/README.md b/README.md
index e6781ba..3a14929 100644
--- a/README.md
+++ b/README.md
@@ -1,159 +1,92 @@
-# Neural Architecture Search (NAS)
+# Auto Deep Learning (AutoDL)
-This project contains the following neural architecture search (NAS) algorithms, implemented in [PyTorch](http://pytorch.org).
-More NAS resources can be found in [Awesome-NAS](https://github.com/D-X-Y/Awesome-NAS).
+---------
+[](LICENSE.md)
-- NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020
-- Network Pruning via Transformable Architecture Search, NeurIPS 2019
-- One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019
-- Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019
-- 10 NAS algorithms for the neural topology in `exps/algos` (see [NAS-Bench-102.md](https://github.com/D-X-Y/NAS-Projects/blob/master/NAS-Bench-102.md) for more details)
-- Several typical classification models, e.g., ResNet and DenseNet (see [BASELINE.md](https://github.com/D-X-Y/NAS-Projects/blob/master/BASELINE.md))
+Auto Deep Learning by DXY (AutoDL-Projects) is an open source, lightweight, but useful project for researchers.
+In this project, Xuanyi Dong implemented several neural architecture search (NAS) and hyper-parameter optimization (HPO) algorithms.
+He hopes to build it as an easy-to-use AutoDL toolkit in future.
+
+## **Who should consider using AutoDL-Projects**
+
+- Beginner who want to **try different AutoDL algorithms** for study
+- Engineer who want to **try AutoDL** to investigate whether AutoDL works on your projects
+- Researchers who want to **easily** implement and experiement **new** AutoDL algorithms.
+
+## **Why should we use AutoDL-Projects**
+- Simplest library dependencies: each examlpe is purely relied on PyTorch or Tensorflow (except for some basic libraries in Anaconda)
+- All algorithms are in the same codebase. If you implement new algorithms, it is easy to fairly compare with many other baselines.
+- I will actively support this project, because all my furture AutoDL research will be built upon this project.
+
+
+## AutoDL-Projects Capabilities
+
+At the moment, this project provides the following algorithms and scripts to run them. Please see the details in the link provided in the description column.
+
+
+
+
+
+ Type |
+ Algorithms |
+ Description |
+
+
+ NAS |
+ Network Pruning via Transformable Architecture Search |
+ NIPS-2019-TAS.md |
+
+
+ Searching for A Robust Neural Architecture in Four GPU Hours |
+ CVPR-2019-GDAS.md |
+
+
+ One-Shot Neural Architecture Search via Self-Evaluated Template Network |
+ ICCV-2019-SETN.py |
+
+
+ NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search |
+ NAS-Bench-201.md |
+
+
+ ENAS / DARTS / REA / REINFORCE / BOHB |
+ NAS-Bench-201.md |
+
+
+ HPO |
+ coming soon |
+ coming soon |
+
+
+ Basic |
+ Deep Learning-based Image Classification |
+ BASELINE.md |
+
+
+
+
+
+## History of this repo
+
+At first, this repo is `GDAS`, which is used to reproduce results in Searching for A Robust Neural Architecture in Four GPU Hours.
+After that, more functions and more NAS algorithms are continuely added in this repo. After it supports more than five algorithms, it is upgraded from `GDAS` to `NAS-Project`.
+Now, since both HPO and NAS are supported in this repo, it is upgraded from `NAS-Project` to `AutoDL-Projects`.
## Requirements and Preparation
-Please install `PyTorch>=1.2.0`, `Python>=3.6`, and `opencv`.
+Please install `Python>=3.6` and `PyTorch>=1.3.0`. (You could also run this project in lower versions of Python and PyTorch, but may have bugs).
+Some visualization codes may require `opencv`.
CIFAR and ImageNet should be downloaded and extracted into `$TORCH_HOME`.
-Some methods use knowledge distillation (KD), which require pre-trained models. Please download these models from [Google Driver](https://drive.google.com/open?id=1ANmiYEGX-IQZTfH8w0aSpj-Wypg-0DR-) (or train by yourself) and save into `.latent-data`.
+Some methods use knowledge distillation (KD), which require pre-trained models. Please download these models from [Google Drive](https://drive.google.com/open?id=1ANmiYEGX-IQZTfH8w0aSpj-Wypg-0DR-) (or train by yourself) and save into `.latent-data`.
-### Usefull tools
-1. Compute the number of parameters and FLOPs of a model:
-```
-from utils import get_model_infos
-flop, param = get_model_infos(net, (1,3,32,32))
-```
-
-2. Different NAS-searched architectures are defined [here](https://github.com/D-X-Y/NAS-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py).
-
-
-## [NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr)
-
-We build a new benchmark for neural architecture search, please see more details in [NAS-Bench-102.md](https://github.com/D-X-Y/NAS-Projects/blob/master/NAS-Bench-102.md).
-
-The benchmark data file (v1.0) is `NAS-Bench-102-v1_0-e61699.pth`, which can be downloaded from [Google Drive](https://drive.google.com/open?id=1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs).
-
-Now you can simply use our API by `pip install nas-bench-102`.
-
-## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717)
-[](https://paperswithcode.com/sota/network-pruning-on-cifar-100?p=network-pruning-via-transformable)
-
-In this paper, we proposed a differentiable searching strategy for transformable architectures, i.e., searching for the depth and width of a deep neural network.
-You could see the highlight of our Transformable Architecture Search (TAS) at our [project page](https://xuanyidong.com/assets/projects/NeurIPS-2019-TAS.html).
-
-
-
-
-
-
-
-### Usage
-
-Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`.
-If you do not have `ILSVRC2012` data, pleasee comment L12 in `./scripts/prepare.sh`.
-
-args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel name, `CIFARX` indicates the searching hyper-parameters, `0.47/0.57` indicates the expected FLOP ratio, `-1` indicates the random seed.
-
-#### Search for the depth configuration of ResNet:
-```
-CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-depth-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1
-```
-
-#### Search for the width configuration of ResNet:
-```
-CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-width-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1
-```
-
-#### Search for both depth and width configuration of ResNet:
-```
-CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-shape-cifar.sh cifar10 ResNet56 CIFARX 0.47 -1
-```
-
-#### Training the searched shape config from TAS
-If you want to directly train a model with searched configuration of TAS, try these:
-```
-CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar10 C010-ResNet32 -1
-CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar100 C100-ResNet32 -1
-```
-
-### Model Configuration
-The searched shapes for ResNet-20/32/56/110/164 in Table 3 in the original paper are listed in [`configs/NeurIPS-2019`](https://github.com/D-X-Y/NAS-Projects/tree/master/configs/NeurIPS-2019).
-
-
-## [One-Shot Neural Architecture Search via Self-Evaluated Template Network](https://arxiv.org/abs/1910.05733)
-
-
-
-Highlight: we equip one-shot NAS with an architecture sampler and train network weights using uniformly sampling.
-
-
-### Usage
-
-Please use the following scripts to train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet.
-```
-CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10 SETN 96 -1
-CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 SETN 96 -1
-CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k SETN 256 -1
-```
-
-The searching codes of SETN on a small search space:
-```
-CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1
-```
-
-
-## [Searching for A Robust Neural Architecture in Four GPU Hours](https://arxiv.org/abs/1910.04465)
-
-
-
-
-We proposed a Gradient-based searching algorithm using Differentiable Architecture Sampling (GDAS). GDAS is baseed on DARTS and improves it with Gumbel-softmax sampling.
-Experiments on CIFAR-10, CIFAR-100, ImageNet, PTB, and WT2 are reported.
-
-
-### Usage
-
-#### Reproducing the results of our searched architecture in GDAS
-Please use the following scripts to train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet.
-```
-CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10 GDAS_V1 96 -1
-CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 GDAS_V1 96 -1
-CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1
-```
-
-#### Searching on the NASNet search space
-Please use the following scripts to use GDAS to search as in the original paper:
-```
-CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/GDAS-search-NASNet-space.sh cifar10 1 -1
-```
-
-#### Searching on a small search space (NAS-Bench-102)
-The GDAS searching codes on a small search space:
-```
-CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1
-```
-
-The baseline searching codes are DARTS:
-```
-CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1
-CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1
-```
-
-#### Training the searched architecture
-To train the searched architecture found by the above scripts, please use the following codes:
-```
-CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5
-```
-`|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|` represents the structure of a searched architecture. My codes will automatically print it during the searching procedure.
-
-
-# Citation
+## Citation
If you find that this project helps your research, please consider citing some of the following papers:
```
-@inproceedings{dong2020nasbench102,
- title = {NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search},
+@inproceedings{dong2020nasbench201,
+ title = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search},
author = {Dong, Xuanyi and Yang, Yi},
booktitle = {International Conference on Learning Representations (ICLR)},
url = {https://openreview.net/forum?id=HJxyZkBKDr},
@@ -180,3 +113,11 @@ If you find that this project helps your research, please consider citing some o
year = {2019}
}
```
+
+## Related Projects
+
+- [Awesome-NAS](https://github.com/D-X-Y/Awesome-NAS) : A curated list of neural architecture search and related resources.
+- [AutoML Freiburg-Hannover](https://www.automl.org/) : A website maintained by Frank Hutter's team, containing many AutoML resources.
+
+# License
+The entire codebase is under [MIT license](LICENSE.md)
diff --git a/configs/NeurIPS-2019/ImageNet-ResNet18V1.config b/configs/NeurIPS-2019/ImageNet-ResNet18V1.config
new file mode 100644
index 0000000..9a0ab7d
--- /dev/null
+++ b/configs/NeurIPS-2019/ImageNet-ResNet18V1.config
@@ -0,0 +1,14 @@
+{
+ "dataset" : ["str" , "imagenet"],
+ "arch" : ["str" , "resnet"],
+ "block_name" : ["str" , "BasicBlock"],
+ "layers" : ["int" , ["2", "2", "2", "2"]],
+ "deep_stem" : ["bool" , "0"],
+ "zero_init_residual" : ["bool" , "1"],
+ "class_num" : ["int" , "1000"],
+ "search_mode" : ["str" , "shape"],
+ "xchannels" : ["int" , ["3", "64", "25", "64", "38", "19", "128", "128", "38", "38", "256", "256", "256", "256", "512", "512", "512", "512"]],
+ "xblocks" : ["int" , ["1", "1", "2", "2"]],
+ "super_type" : ["str" , "infer-shape"],
+ "estimated_FLOP" : ["float" , "1120.44032"]
+}
\ No newline at end of file
diff --git a/configs/NeurIPS-2019/ImageNet-ResNet50V1.config b/configs/NeurIPS-2019/ImageNet-ResNet50V1.config
new file mode 100644
index 0000000..2d04b7d
--- /dev/null
+++ b/configs/NeurIPS-2019/ImageNet-ResNet50V1.config
@@ -0,0 +1,14 @@
+{
+ "dataset" : ["str" , "imagenet"],
+ "arch" : ["str" , "resnet"],
+ "block_name" : ["str" , "Bottleneck"],
+ "layers" : ["int" , ["3", "4", "6", "3"]],
+ "deep_stem" : ["bool" , "0"],
+ "zero_init_residual" : ["bool" , "1"],
+ "class_num" : ["int" , "1000"],
+ "search_mode" : ["str" , "shape"],
+ "xchannels" : ["int" , ["3", "45", "45", "30", "102", "33", "60", "154", "68", "70", "180", "38", "38", "307", "38", "38", "410", "64", "128", "358", "38", "51", "256", "76", "76", "512", "76", "76", "512", "179", "256", "614", "100", "102", "307", "179", "230", "614", "204", "102", "307", "153", "153", "1228", "512", "512", "1434", "512", "512", "1844"]],
+ "xblocks" : ["int" , ["3", "4", "5", "3"]],
+ "super_type" : ["str" , "infer-shape"],
+ "estimated_FLOP" : ["float" , "2291.316289"]
+}
diff --git a/BASELINE.md b/docs/BASELINE.md
similarity index 100%
rename from BASELINE.md
rename to docs/BASELINE.md
diff --git a/docs/CVPR-2019-GDAS.md b/docs/CVPR-2019-GDAS.md
new file mode 100644
index 0000000..73381f4
--- /dev/null
+++ b/docs/CVPR-2019-GDAS.md
@@ -0,0 +1,76 @@
+# [Searching for A Robust Neural Architecture in Four GPU Hours](https://arxiv.org/abs/1910.04465)
+
+
+
+Searching for A Robust Neural Architecture in Four GPU Hours is accepted at CVPR 2019.
+In this paper, we proposed a Gradient-based searching algorithm using Differentiable Architecture Sampling (GDAS).
+GDAS is baseed on DARTS and improves it with Gumbel-softmax sampling.
+Concurrently at the submission period, several NAS papers (SNAS and FBNet) also utilized Gumbel-softmax sampling. We are different at how to forward and backward, see more details in our paper and codes.
+Experiments on CIFAR-10, CIFAR-100, ImageNet, PTB, and WT2 are reported.
+
+
+## Requirements and Preparation
+
+Please install `Python>=3.6` and `PyTorch>=1.2.0`.
+
+CIFAR and ImageNet should be downloaded and extracted into `$TORCH_HOME`.
+
+### Usefull tools
+1. Compute the number of parameters and FLOPs of a model:
+```
+from utils import get_model_infos
+flop, param = get_model_infos(net, (1,3,32,32))
+```
+
+2. Different NAS-searched architectures are defined [here](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py).
+
+
+## Usage
+
+### Reproducing the results of our searched architecture in GDAS
+Please use the following scripts to train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet.
+```
+CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10 GDAS_V1 96 -1
+CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 GDAS_V1 96 -1
+CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1
+```
+If you are interested in the configs of each NAS-searched architecture, they are defined at [genotypes.py](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py).
+
+### Searching on the NASNet search space
+Please use the following scripts to use GDAS to search as in the original paper:
+```
+CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/GDAS-search-NASNet-space.sh cifar10 1 -1
+```
+If you want to train the searched architecture found by the above scripts, you need to add the config of that architecture (will be printed in log) in [genotypes.py](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py).
+
+### Searching on a small search space (NAS-Bench-201)
+The GDAS searching codes on a small search space:
+```
+CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1
+```
+
+The baseline searching codes are DARTS:
+```
+CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1
+CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1
+```
+
+**After searching**, if you want to train the searched architecture found by the above scripts, please use the following codes:
+```
+CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-201/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5
+```
+`|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|` represents the structure of a searched architecture. My codes will automatically print it during the searching procedure.
+
+
+# Citation
+
+If you find that this project helps your research, please consider citing the following paper:
+```
+@inproceedings{dong2019search,
+ title = {Searching for A Robust Neural Architecture in Four GPU Hours},
+ author = {Dong, Xuanyi and Yang, Yi},
+ booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
+ pages = {1761--1770},
+ year = {2019}
+}
+```
diff --git a/docs/ICCV-2019-SETN.py b/docs/ICCV-2019-SETN.py
new file mode 100644
index 0000000..0f72b7a
--- /dev/null
+++ b/docs/ICCV-2019-SETN.py
@@ -0,0 +1,50 @@
+# [One-Shot Neural Architecture Search via Self-Evaluated Template Network](https://arxiv.org/abs/1910.05733)
+
+
+
+Highlight: we equip one-shot NAS with an architecture sampler and train network weights using uniformly sampling.
+
+One-Shot Neural Architecture Search via Self-Evaluated Template Network is accepted by ICCV 2019.
+
+
+## Requirements and Preparation
+
+Please install `Python>=3.6` and `PyTorch>=1.2.0`.
+
+### Usefull tools
+1. Compute the number of parameters and FLOPs of a model:
+```
+from utils import get_model_infos
+flop, param = get_model_infos(net, (1,3,32,32))
+```
+
+2. Different NAS-searched architectures are defined [here](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py).
+
+
+## Usage
+
+Please use the following scripts to train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet.
+```
+CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10 SETN 96 -1
+CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 SETN 96 -1
+CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k SETN 256 -1
+```
+
+The searching codes of SETN on a small search space (NAS-Bench-201).
+```
+CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1
+```
+
+
+# Citation
+
+If you find that this project helps your research, please consider citing the following paper:
+```
+@inproceedings{dong2019one,
+ title = {One-Shot Neural Architecture Search via Self-Evaluated Template Network},
+ author = {Dong, Xuanyi and Yang, Yi},
+ booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
+ pages = {3681--3690},
+ year = {2019}
+}
+```
diff --git a/NAS-Bench-102.md b/docs/NAS-Bench-201.md
similarity index 72%
rename from NAS-Bench-102.md
rename to docs/NAS-Bench-201.md
index 7bb9545..ffac200 100644
--- a/NAS-Bench-102.md
+++ b/docs/NAS-Bench-201.md
@@ -1,40 +1,40 @@
-# [NAS-BENCH-102: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr)
+# [NAS-BENCH-201: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr)
-We propose an algorithm-agnostic NAS benchmark (NAS-Bench-102) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms.
+We propose an algorithm-agnostic NAS benchmark (NAS-Bench-201) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms.
The design of our search space is inspired by that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph.
Each edge here is associated with an operation selected from a predefined operation set.
-For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-102 includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total.
+For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-201 includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total.
In this Markdown file, we provide:
-- [How to Use NAS-Bench-102](#how-to-use-nas-bench-102)
-- [Instruction to re-generate NAS-Bench-102](#instruction-to-re-generate-nas-bench-102)
-- [10 NAS algorithms evaluated in our paper](#to-reproduce-10-baseline-nas-algorithms-in-nas-bench-102)
+- [How to Use NAS-Bench-201](#how-to-use-nas-bench-201)
+- [Instruction to re-generate NAS-Bench-201](#instruction-to-re-generate-nas-bench-201)
+- [10 NAS algorithms evaluated in our paper](#to-reproduce-10-baseline-nas-algorithms-in-nas-bench-201)
Note: please use `PyTorch >= 1.2.0` and `Python >= 3.6.0`.
-Simply type `pip install nas-bench-102` to install our api.
+Simply type `pip install nas-bench-201` to install our api.
-If you have any questions or issues, please post it at [here](https://github.com/D-X-Y/NAS-Projects/issues) or email me.
+If you have any questions or issues, please post it at [here](https://github.com/D-X-Y/AutoDL-Projects/issues) or email me.
### Preparation and Download
-The benchmark file of NAS-Bench-102 can be downloaded from [Google Drive](https://drive.google.com/open?id=1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs) or [Baidu-Wangpan (code:6u5d)](https://pan.baidu.com/s/1CiaNH6C12zuZf7q-Ilm09w).
+The benchmark file of NAS-Bench-201 can be downloaded from [Google Drive](https://drive.google.com/open?id=1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs) or [Baidu-Wangpan (code:6u5d)](https://pan.baidu.com/s/1CiaNH6C12zuZf7q-Ilm09w).
You can move it to anywhere you want and send its path to our API for initialization.
-- v1.0: `NAS-Bench-102-v1_0-e61699.pth`, where `e61699` is the last six digits for this file. It contains all information except for the trained weights of each trial.
+- v1.0: `NAS-Bench-201-v1_0-e61699.pth`, where `e61699` is the last six digits for this file. It contains all information except for the trained weights of each trial.
- v1.0: The full data of each architecture can be download from [Google Drive](https://drive.google.com/open?id=1X2i-JXaElsnVLuGgM4tP-yNwtsspXgdQ) (about 226GB). This compressed folder has 15625 files containing the the trained weights.
- v1.0: Checkpoints for 3 runs of each baseline NAS algorithm are provided in [Google Drive](https://drive.google.com/open?id=1eAgLZQAViP3r6dA0_ZOOGG9zPLXhGwXi).
-The training and evaluation data used in NAS-Bench-102 can be downloaded from [Google Drive](https://drive.google.com/open?id=1L0Lzq8rWpZLPfiQGd6QR8q5xLV88emU7) or [Baidu-Wangpan (code:4fg7)](https://pan.baidu.com/s/1XAzavPKq3zcat1yBA1L2tQ).
-It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). If you want to generate NAS-Bench-102 or similar NAS datasets or training models by yourself, you need these data.
+The training and evaluation data used in NAS-Bench-201 can be downloaded from [Google Drive](https://drive.google.com/open?id=1L0Lzq8rWpZLPfiQGd6QR8q5xLV88emU7) or [Baidu-Wangpan (code:4fg7)](https://pan.baidu.com/s/1XAzavPKq3zcat1yBA1L2tQ).
+It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). If you want to generate NAS-Bench-201 or similar NAS datasets or training models by yourself, you need these data.
-## How to Use NAS-Bench-102
+## How to Use NAS-Bench-201
1. Creating an API instance from a file:
```
-from nas_102_api import NASBench102API as API
+from nas_201_api import NASBench201API as API
api = API('$path_to_meta_nas_bench_file')
-api = API('NAS-Bench-102-v1_0-e61699.pth')
-api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-102-v1_0-e61699.pth'))
+api = API('NAS-Bench-201-v1_0-e61699.pth')
+api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_0-e61699.pth'))
```
2. Show the number of architectures `len(api)` and each architecture `api[i]`:
@@ -72,16 +72,16 @@ index = api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1
api.show(index)
```
-5. For other usages, please see `lib/nas_102_api/api.py`
+5. For other usages, please see `lib/nas_201_api/api.py`
### Detailed Instruction
-In `nas_102_api`, we define three classes: `NASBench102API`, `ArchResults`, `ResultsCount`.
+In `nas_201_api`, we define three classes: `NASBench201API`, `ArchResults`, `ResultsCount`.
`ResultsCount` maintains all information of a specific trial. One can instantiate ResultsCount and get the info via the following codes (`000157-FULL.pth` saves all information of all trials of 157-th architecture):
```
-from nas_102_api import ResultsCount
+from nas_201_api import ResultsCount
xdata = torch.load('000157-FULL.pth')
odata = xdata['full']['all_results'][('cifar10-valid', 777)]
result = ResultsCount.create_from_state_dict( odata )
@@ -100,7 +100,7 @@ network.load_state_dict(result.get_net_param())
`ArchResults` maintains all information of all trials of an architecture. Please see the following usages:
```
-from nas_102_api import ArchResults
+from nas_201_api import ArchResults
xdata = torch.load('000157-FULL.pth')
archRes = ArchResults.create_from_state_dict(xdata['less']) # load trials trained with 12 epochs
archRes = ArchResults.create_from_state_dict(xdata['full']) # load trials trained with 200 epochs
@@ -112,28 +112,30 @@ print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False)) # print the
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, True)) # print loss/accuracy/time of a randomly selected trial
```
-`NASBench102API` is the topest level api. Please see the following usages:
+`NASBench201API` is the topest level api. Please see the following usages:
```
-from nas_102_api import NASBench102API as API
-api = API('NAS-Bench-102-v1_0-e61699.pth') # This will load all the information of NAS-Bench-102 except the trained weights
-api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-102-v1_0-e61699.pth')) # The same as the above line while I usually save NAS-Bench-102-v1_0-e61699.pth in ~/.torch/.
+from nas_201_api import NASBench201API as API
+api = API('NAS-Bench-201-v1_0-e61699.pth') # This will load all the information of NAS-Bench-201 except the trained weights
+api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_0-e61699.pth')) # The same as the above line while I usually save NAS-Bench-201-v1_0-e61699.pth in ~/.torch/.
api.show(-1) # show info of all architectures
-api.reload('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-BENCH-102-4-v1.0-archive'), 3) # This code will reload the information 3-th architecture with the trained weights
+api.reload('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-BENCH-201-4-v1.0-archive'), 3) # This code will reload the information 3-th architecture with the trained weights
weights = api.get_net_param(3, 'cifar10', None) # Obtaining the weights of all trials for the 3-th architecture on cifar10. It will returns a dict, where the key is the seed and the value is the trained weights.
```
-## Instruction to Re-Generate NAS-Bench-102
+## Instruction to Re-Generate NAS-Bench-201
-1. generate the meta file for NAS-Bench-102 using the following script, where `NAS-BENCH-102` indicates the name and `4` indicates the maximum number of nodes in a cell.
+There are four steps to build NAS-Bench-201.
+
+1. generate the meta file for NAS-Bench-201 using the following script, where `NAS-BENCH-201` indicates the name and `4` indicates the maximum number of nodes in a cell.
```
-bash scripts-search/NAS-Bench-102/meta-gen.sh NAS-BENCH-102 4
+bash scripts-search/NAS-Bench-201/meta-gen.sh NAS-BENCH-201 4
```
-2. train earch architecture on a single GPU (see commands in `output/NAS-BENCH-102-4/BENCH-102-N4.opt-full.script`, which is automatically generated by step-1).
+2. train earch architecture on a single GPU (see commands in `output/NAS-BENCH-201-4/BENCH-201-N4.opt-full.script`, which is automatically generated by step-1).
```
-CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-models.sh 0 0 389 -1 '777 888 999'
+CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-201/train-models.sh 0 0 389 -1 '777 888 999'
```
This command will train 390 architectures (id from 0 to 389) using the following four kinds of splits with three random seeds (777, 888, 999).
@@ -144,54 +146,55 @@ This command will train 390 architectures (id from 0 to 389) using the following
| CIFAR-100 | train | valid / test |
| ImageNet-16-120 | train | valid / test |
-Note that the above `train`, `valid`, and `test` indicate the proposed splits in our NAS-Bench-102, and they might be different with the original splits.
+Note that the above `train`, `valid`, and `test` indicate the proposed splits in our NAS-Bench-201, and they might be different with the original splits.
3. calculate the latency, merge the results of all architectures, and simplify the results.
-(see commands in `output/NAS-BENCH-102-4/meta-node-4.cal-script.txt` which is automatically generated by step-1).
+(see commands in `output/NAS-BENCH-201-4/meta-node-4.cal-script.txt` which is automatically generated by step-1).
```
-OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0 python exps/NAS-Bench-102/statistics.py --mode cal --target_dir 000000-000389-C16-N5
+OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0 python exps/NAS-Bench-201/statistics.py --mode cal --target_dir 000000-000389-C16-N5
```
-4. merge all results into a single file for NAS-Bench-102-API.
+4. merge all results into a single file for NAS-Bench-201-API.
```
-OMP_NUM_THREADS=4 python exps/NAS-Bench-102/statistics.py --mode merge
+OMP_NUM_THREADS=4 python exps/NAS-Bench-201/statistics.py --mode merge
```
-This command will generate a single file `output/NAS-BENCH-102-4/simplifies/C16-N5-final-infos.pth` contains all the data for NAS-Bench-102.
-This generated file will serve as the input for our NAS-Bench-102 API.
+This command will generate a single file `output/NAS-BENCH-201-4/simplifies/C16-N5-final-infos.pth` contains all the data for NAS-Bench-201.
+This generated file will serve as the input for our NAS-Bench-201 API.
[option] train a single architecture on a single GPU.
```
-CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh resnet 16 5
-CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5
+CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-201/train-a-net.sh resnet 16 5
+CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-201/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5
```
-## To Reproduce 10 Baseline NAS Algorithms in NAS-Bench-102
+## To Reproduce 10 Baseline NAS Algorithms in NAS-Bench-201
-We have tried our best to implement each method. However, still, some algorithms might obtain non-optimal results since their hyper-parameters might not fit our NAS-Bench-102.
+We have tried our best to implement each method. However, still, some algorithms might obtain non-optimal results since their hyper-parameters might not fit our NAS-Bench-201.
If researchers can provide better results with different hyper-parameters, we are happy to update results according to the new experimental results. We also welcome more NAS algorithms to test on our dataset and would include them accordingly.
**Note that** you need to prepare the training and test data as described in [Preparation and Download](#preparation-and-download)
-- [1] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1`, where `cifar10` can be replaced with `cifar100` or `ImageNet16-120`.
-- [2] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1`
-- [3] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1`
-- [4] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1`
-- [5] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/ENAS.sh cifar10 -1`
-- [6] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 -1`
+- [1] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 1 -1`, where `cifar10` can be replaced with `cifar100` or `ImageNet16-120`.
+- [2] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 1 -1`
+- [3] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 1 -1`
+- [4] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 1 -1`
+- [5] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/ENAS.sh cifar10 1 -1`
+- [6] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 1 -1`
- [7] `bash ./scripts-search/algos/R-EA.sh -1`
- [8] `bash ./scripts-search/algos/Random.sh -1`
-- [9] `bash ./scripts-search/algos/REINFORCE.sh -1`
+- [9] `bash ./scripts-search/algos/REINFORCE.sh 0.5 -1`
- [10] `bash ./scripts-search/algos/BOHB.sh -1`
+In commands [1-6], the first args `cifar10` indicates the dataset name, the second args `1` indicates the behavior of BN, and the first args `-1` indicates the random seed.
# Citation
-If you find that NAS-Bench-102 helps your research, please consider citing it:
+If you find that NAS-Bench-201 helps your research, please consider citing it:
```
-@inproceedings{dong2020nasbench102,
- title = {NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search},
+@inproceedings{dong2020nasbench201,
+ title = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search},
author = {Dong, Xuanyi and Yang, Yi},
booktitle = {International Conference on Learning Representations (ICLR)},
url = {https://openreview.net/forum?id=HJxyZkBKDr},
diff --git a/docs/NIPS-2019-TAS.md b/docs/NIPS-2019-TAS.md
new file mode 100644
index 0000000..c59a9a9
--- /dev/null
+++ b/docs/NIPS-2019-TAS.md
@@ -0,0 +1,71 @@
+# [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717)
+
+[](https://paperswithcode.com/sota/network-pruning-on-cifar-100?p=network-pruning-via-transformable)
+
+Network Pruning via Transformable Architecture Search is accepted by NeurIPS 2019.
+In this paper, we proposed a differentiable searching strategy for transformable architectures, i.e., searching for the depth and width of a deep neural network.
+You could see the highlight of our Transformable Architecture Search (TAS) at our [project page](https://xuanyidong.com/assets/projects/NeurIPS-2019-TAS.html).
+
+
+
+
+
+
+
+## Requirements and Preparation
+
+Please install `Python>=3.6` and `PyTorch>=1.2.0`.
+
+CIFAR and ImageNet should be downloaded and extracted into `$TORCH_HOME`.
+The proposed method utilized knowledge distillation (KD), which require pre-trained models. Please download these models from [Google Drive](https://drive.google.com/open?id=1ANmiYEGX-IQZTfH8w0aSpj-Wypg-0DR-) (or train by yourself) and save into `.latent-data`.
+
+**LOGS**:
+We provide some logs at [Google Drive](https://drive.google.com/open?id=1_qUY4DTtuW_l6ZonynQAC9ttqy35fxZ-). It includes (1) logs of training searched shape of ResNet-18 and ResNet-50 on ImageNet, (2) logs of searching and training for ResNet-164 on CIFAR, (3) logs of searching and training for ResNet56 on CIFAR-10, (4) logs of searching and training for ResNet110 on CIFAR-100.
+
+## Usage
+
+Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`.
+If you do not have `ILSVRC2012` data, pleasee comment L12 in `./scripts/prepare.sh`.
+
+args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel name, `CIFARX` indicates the searching hyper-parameters, `0.47/0.57` indicates the expected FLOP ratio, `-1` indicates the random seed.
+
+**Model Configuration**
+
+The searched shapes for ResNet-20/32/56/110/164 and ResNet-18/50 in Table 3/4 in the original paper are listed in [`configs/NeurIPS-2019`](https://github.com/D-X-Y/AutoDL-Projects/tree/master/configs/NeurIPS-2019).
+
+**Search for the depth configuration of ResNet**
+```
+CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-depth-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1
+```
+
+**Search for the width configuration of ResNet**
+```
+CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-width-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1
+```
+
+**Search for both depth and width configuration of ResNet**
+```
+CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-shape-cifar.sh cifar10 ResNet56 CIFARX 0.47 -1
+```
+
+**Training the searched shape config from TAS:**
+If you want to directly train a model with searched configuration of TAS, try these:
+```
+CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar10 C010-ResNet32 -1
+CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar100 C100-ResNet32 -1
+CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/tas-infer-train.sh imagenet-1k ImageNet-ResNet18V1 -1
+CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/tas-infer-train.sh imagenet-1k ImageNet-ResNet50V1 -1
+```
+
+
+# Citation
+
+If you find that this project helps your research, please consider citing the following paper:
+```
+@inproceedings{dong2019tas,
+ title = {Network Pruning via Transformable Architecture Search},
+ author = {Dong, Xuanyi and Yang, Yi},
+ booktitle = {Neural Information Processing Systems (NeurIPS)},
+ year = {2019}
+}
+```
diff --git a/exps-tf/GDAS.py b/exps-tf/GDAS.py
index 7ca3a45..42dafc3 100644
--- a/exps-tf/GDAS.py
+++ b/exps-tf/GDAS.py
@@ -48,7 +48,7 @@ def main(xargs):
# Create an instance of the model
config = dict2config({'name': 'GDAS',
'C' : xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes,
- 'num_classes': 10, 'space': 'nas-bench-102', 'affine': True}, None)
+ 'num_classes': 10, 'space': 'nas-bench-201', 'affine': True}, None)
model = get_cell_based_tiny_net(config)
#import pdb; pdb.set_trace()
#model.build(((64, 32, 32, 3), (1,)))
@@ -126,7 +126,7 @@ def main(xargs):
print('{:} genotype : {:}\n{:}\n'.format(time_string(), genotype, model.get_np_alphas()))
if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='NAS-Bench-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+ parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# training details
parser.add_argument('--epochs' , type=int , default= 250 , help='')
parser.add_argument('--tau_max' , type=float, default= 10 , help='')
diff --git a/exps/NAS-Bench-102/check.py b/exps/NAS-Bench-201/check.py
similarity index 93%
rename from exps/NAS-Bench-102/check.py
rename to exps/NAS-Bench-201/check.py
index 1e35ef5..05f7e7d 100644
--- a/exps/NAS-Bench-102/check.py
+++ b/exps/NAS-Bench-201/check.py
@@ -1,7 +1,7 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
-# python exps/NAS-Bench-102/check.py --base_save_dir
+# python exps/NAS-Bench-201/check.py --base_save_dir
##################################################
import os, sys, time, argparse, collections
from shutil import copyfile
@@ -67,8 +67,8 @@ def check_files(save_dir, meta_file, basestr):
if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='NAS Benchmark 102', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- parser.add_argument('--base_save_dir', type=str, default='./output/NAS-BENCH-102-4', help='The base-name of folder to save checkpoints and log.')
+ parser = argparse.ArgumentParser(description='NAS Benchmark 201', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+ parser.add_argument('--base_save_dir', type=str, default='./output/NAS-BENCH-201-4', help='The base-name of folder to save checkpoints and log.')
parser.add_argument('--max_node', type=int, default=4, help='The maximum node in a cell.')
parser.add_argument('--channel', type=int, default=16, help='The number of channels.')
parser.add_argument('--num_cells', type=int, default=5, help='The number of cells in one stage.')
@@ -78,7 +78,7 @@ if __name__ == '__main__':
meta_path = save_dir / 'meta-node-{:}.pth'.format(args.max_node)
assert save_dir.exists(), 'invalid save dir path : {:}'.format(save_dir)
assert meta_path.exists(), 'invalid saved meta path : {:}'.format(meta_path)
- print ('check NAS-Bench-102 in {:}'.format(save_dir))
+ print ('check NAS-Bench-201 in {:}'.format(save_dir))
basestr = 'C{:}-N{:}'.format(args.channel, args.num_cells)
check_files(save_dir, meta_path, basestr)
diff --git a/exps/NAS-Bench-102/dist-setup.py b/exps/NAS-Bench-201/dist-setup.py
similarity index 79%
rename from exps/NAS-Bench-102/dist-setup.py
rename to exps/NAS-Bench-201/dist-setup.py
index 126d2b6..5410f8c 100644
--- a/exps/NAS-Bench-102/dist-setup.py
+++ b/exps/NAS-Bench-201/dist-setup.py
@@ -8,15 +8,15 @@ def read(fname='README.md'):
setup(
- name = "nas_bench_102",
+ name = "nas_bench_201",
version = "1.0",
author = "Xuanyi Dong",
author_email = "dongxuanyi888@gmail.com",
- description = "API for NAS-Bench-102 (a benchmark for neural architecture search).",
+ description = "API for NAS-Bench-201 (a benchmark for neural architecture search).",
license = "MIT",
keywords = "NAS Dataset API DeepLearning",
- url = "https://github.com/D-X-Y/NAS-Projects",
- packages=['nas_102_api'],
+ url = "https://github.com/D-X-Y/NAS-Bench-201",
+ packages=['nas_201_api'],
long_description=read('README.md'),
long_description_content_type='text/markdown',
classifiers=[
diff --git a/exps/NAS-Bench-102/functions.py b/exps/NAS-Bench-201/functions.py
similarity index 100%
rename from exps/NAS-Bench-102/functions.py
rename to exps/NAS-Bench-201/functions.py
diff --git a/exps/NAS-Bench-102/main.py b/exps/NAS-Bench-201/main.py
similarity index 97%
rename from exps/NAS-Bench-102/main.py
rename to exps/NAS-Bench-201/main.py
index 6363b1f..eb600e1 100644
--- a/exps/NAS-Bench-102/main.py
+++ b/exps/NAS-Bench-201/main.py
@@ -1,5 +1,5 @@
###############################################################
-# NAS-Bench-102, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
+# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
###############################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019-2020 #
###############################################################
@@ -213,7 +213,7 @@ def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, se
def generate_meta_info(save_dir, max_node, divide=40):
- aa_nas_bench_ss = get_search_spaces('cell', 'nas-bench-102')
+ aa_nas_bench_ss = get_search_spaces('cell', 'nas-bench-201')
archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2)))
@@ -249,15 +249,15 @@ def generate_meta_info(save_dir, max_node, divide=40):
torch.save(info, save_name)
print ('save the meta file into {:}'.format(save_name))
- script_name_full = save_dir / 'BENCH-102-N{:}.opt-full.script'.format(max_node)
- script_name_less = save_dir / 'BENCH-102-N{:}.opt-less.script'.format(max_node)
+ script_name_full = save_dir / 'BENCH-201-N{:}.opt-full.script'.format(max_node)
+ script_name_less = save_dir / 'BENCH-201-N{:}.opt-less.script'.format(max_node)
full_file = open(str(script_name_full), 'w')
less_file = open(str(script_name_less), 'w')
gaps = total_arch // divide
for start in range(0, total_arch, gaps):
xend = min(start+gaps, total_arch)
- full_file.write('bash ./scripts-search/NAS-Bench-102/train-models.sh 0 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1))
- less_file.write('bash ./scripts-search/NAS-Bench-102/train-models.sh 1 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1))
+ full_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 0 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1))
+ less_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 1 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1))
print ('save the training script into {:} and {:}'.format(script_name_full, script_name_less))
full_file.close()
less_file.close()
@@ -267,14 +267,14 @@ def generate_meta_info(save_dir, max_node, divide=40):
with open(str(script_name), 'w') as cfile:
for start in range(0, total_arch, gaps):
xend = min(start+gaps, total_arch)
- cfile.write('{:} python exps/NAS-Bench-102/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1))
+ cfile.write('{:} python exps/NAS-Bench-201/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1))
print ('save the post-processing script into {:}'.format(script_name))
if __name__ == '__main__':
#mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()]
#parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- parser = argparse.ArgumentParser(description='NAS-Bench-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+ parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--mode' , type=str, required=True, help='The script mode.')
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
parser.add_argument('--max_node', type=int, help='The maximum node in a cell.')
diff --git a/exps/NAS-Bench-102/statistics.py b/exps/NAS-Bench-201/statistics.py
similarity index 98%
rename from exps/NAS-Bench-102/statistics.py
rename to exps/NAS-Bench-201/statistics.py
index 4eddc56..f745198 100644
--- a/exps/NAS-Bench-102/statistics.py
+++ b/exps/NAS-Bench-201/statistics.py
@@ -12,9 +12,9 @@ if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from log_utils import AverageMeter, time_string, convert_secs2time
from config_utils import load_config, dict2config
from datasets import get_datasets
-# NAS-Bench-102 related module or function
+# NAS-Bench-201 related module or function
from models import CellStructure, get_cell_based_tiny_net
-from nas_102_api import ArchResults, ResultsCount
+from nas_201_api import ArchResults, ResultsCount
from functions import pure_evaluate
@@ -271,9 +271,9 @@ def merge_all(save_dir, meta_file, basestr):
if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='NAS-BENCH-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+ parser = argparse.ArgumentParser(description='NAS-BENCH-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--mode' , type=str, choices=['cal', 'merge'], help='The running mode for this script.')
- parser.add_argument('--base_save_dir', type=str, default='./output/NAS-BENCH-102-4', help='The base-name of folder to save checkpoints and log.')
+ parser.add_argument('--base_save_dir', type=str, default='./output/NAS-BENCH-201-4', help='The base-name of folder to save checkpoints and log.')
parser.add_argument('--target_dir' , type=str, help='The target directory.')
parser.add_argument('--max_node' , type=int, default=4, help='The maximum node in a cell.')
parser.add_argument('--channel' , type=int, default=16, help='The number of channels.')
diff --git a/exps/NAS-Bench-102/test-correlation.py b/exps/NAS-Bench-201/test-correlation.py
similarity index 97%
rename from exps/NAS-Bench-102/test-correlation.py
rename to exps/NAS-Bench-201/test-correlation.py
index 2cb6261..4c7c46b 100644
--- a/exps/NAS-Bench-102/test-correlation.py
+++ b/exps/NAS-Bench-201/test-correlation.py
@@ -1,7 +1,7 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
########################################################
-# python exps/NAS-Bench-102/test-correlation.py --api_path $HOME/.torch/NAS-Bench-102-v1_0-e61699.pth
+# python exps/NAS-Bench-201/test-correlation.py --api_path $HOME/.torch/NAS-Bench-201-v1_0-e61699.pth
########################################################
import os, sys, time, glob, random, argparse
import numpy as np
@@ -18,7 +18,7 @@ from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_che
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces, CellStructure
-from nas_102_api import NASBench102API as API
+from nas_201_api import NASBench201API as API
def valid_func(xloader, network, criterion):
@@ -197,9 +197,9 @@ def check_cor_for_bandit_v2(meta_file, test_epoch, use_less_or_not, is_rand):
if __name__ == '__main__':
- parser = argparse.ArgumentParser("Analysis of NAS-Bench-102")
- parser.add_argument('--save_dir', type=str, default='./output/search-cell-nas-bench-102/visuals', help='The base-name of folder to save checkpoints and log.')
- parser.add_argument('--api_path', type=str, default=None, help='The path to the NAS-Bench-102 benchmark file.')
+ parser = argparse.ArgumentParser("Analysis of NAS-Bench-201")
+ parser.add_argument('--save_dir', type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.')
+ parser.add_argument('--api_path', type=str, default=None, help='The path to the NAS-Bench-201 benchmark file.')
args = parser.parse_args()
vis_save_dir = Path(args.save_dir)
diff --git a/exps/NAS-Bench-102/visualize.py b/exps/NAS-Bench-201/visualize.py
similarity index 71%
rename from exps/NAS-Bench-102/visualize.py
rename to exps/NAS-Bench-201/visualize.py
index 97be2f4..802ebdd 100644
--- a/exps/NAS-Bench-102/visualize.py
+++ b/exps/NAS-Bench-201/visualize.py
@@ -1,7 +1,7 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
-# python exps/NAS-Bench-102/visualize.py --api_path $HOME/.torch/NAS-Bench-102-v1_0-e61699.pth
+# python exps/NAS-Bench-201/visualize.py --api_path $HOME/.torch/NAS-Bench-201-v1_0-e61699.pth
##################################################
import os, sys, time, argparse, collections
from tqdm import tqdm
@@ -19,7 +19,7 @@ import matplotlib.pyplot as plt
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from log_utils import time_string
-from nas_102_api import NASBench102API as API
+from nas_201_api import NASBench201API as API
@@ -367,13 +367,66 @@ def write_video(save_dir):
+def plot_results_nas_v2(api, dataset_xset_a, dataset_xset_b, root, file_name, y_lims):
+ #print ('root-path={:}, dataset={:}, xset={:}'.format(root, dataset, xset))
+ print ('root-path : {:} and {:}'.format(dataset_xset_a, dataset_xset_b))
+ checkpoints = ['./output/search-cell-nas-bench-201/R-EA-cifar10/results.pth',
+ './output/search-cell-nas-bench-201/REINFORCE-cifar10/results.pth',
+ './output/search-cell-nas-bench-201/RAND-cifar10/results.pth',
+ './output/search-cell-nas-bench-201/BOHB-cifar10/results.pth'
+ ]
+ legends, indexes = ['REA', 'REINFORCE', 'RANDOM', 'BOHB'], None
+ All_Accs_A, All_Accs_B = OrderedDict(), OrderedDict()
+ for legend, checkpoint in zip(legends, checkpoints):
+ all_indexes = torch.load(checkpoint, map_location='cpu')
+ accuracies_A, accuracies_B = [], []
+ accuracies = []
+ for x in all_indexes:
+ info = api.arch2infos_full[ x ]
+ metrics = info.get_metrics(dataset_xset_a[0], dataset_xset_a[1], None, False)
+ accuracies_A.append( metrics['accuracy'] )
+ metrics = info.get_metrics(dataset_xset_b[0], dataset_xset_b[1], None, False)
+ accuracies_B.append( metrics['accuracy'] )
+ accuracies.append( (accuracies_A[-1], accuracies_B[-1]) )
+ if indexes is None: indexes = list(range(len(all_indexes)))
+ accuracies = sorted(accuracies)
+ All_Accs_A[legend] = [x[0] for x in accuracies]
+ All_Accs_B[legend] = [x[1] for x in accuracies]
+
+ color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k']
+ dpi, width, height = 300, 3400, 2600
+ LabelSize, LegendFontsize = 28, 28
+ figsize = width / float(dpi), height / float(dpi)
+ fig = plt.figure(figsize=figsize)
+ x_axis = np.arange(0, 600)
+ plt.xlim(0, max(indexes))
+ plt.ylim(y_lims[0], y_lims[1])
+ interval_x, interval_y = 100, y_lims[2]
+ plt.xticks(np.arange(0, max(indexes), interval_x), fontsize=LegendFontsize)
+ plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize)
+ plt.grid()
+ plt.xlabel('The index of runs', fontsize=LabelSize)
+ plt.ylabel('The accuracy (%)', fontsize=LabelSize)
+
+ for idx, legend in enumerate(legends):
+ plt.plot(indexes, All_Accs_B[legend], color=color_set[idx], linestyle='--', label='{:}'.format(legend), lw=1, alpha=0.5)
+ plt.plot(indexes, All_Accs_A[legend], color=color_set[idx], linestyle='-', lw=1)
+ for All_Accs in [All_Accs_A, All_Accs_B]:
+ print ('{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}'.format(legend, np.mean(All_Accs[legend]), np.std(All_Accs[legend]), np.mean(All_Accs[legend]), np.std(All_Accs[legend])))
+ plt.legend(loc=4, fontsize=LegendFontsize)
+ save_path = root / '{:}'.format(file_name)
+ print('save figure into {:}\n'.format(save_path))
+ fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf')
+
+
+
def plot_results_nas(api, dataset, xset, root, file_name, y_lims):
print ('root-path={:}, dataset={:}, xset={:}'.format(root, dataset, xset))
- checkpoints = ['./output/search-cell-nas-bench-102/R-EA-cifar10/results.pth',
- './output/search-cell-nas-bench-102/REINFORCE-cifar10/results.pth',
- './output/search-cell-nas-bench-102/RAND-cifar10/results.pth',
- './output/search-cell-nas-bench-102/BOHB-cifar10/results.pth'
+ checkpoints = ['./output/search-cell-nas-bench-201/R-EA-cifar10/results.pth',
+ './output/search-cell-nas-bench-201/REINFORCE-cifar10/results.pth',
+ './output/search-cell-nas-bench-201/RAND-cifar10/results.pth',
+ './output/search-cell-nas-bench-201/BOHB-cifar10/results.pth'
]
legends, indexes = ['REA', 'REINFORCE', 'RANDOM', 'BOHB'], None
All_Accs = OrderedDict()
@@ -422,19 +475,19 @@ def just_show(api):
xlist = np.array(xlist)
print ('{:4s} : mean-time={:.2f} s'.format(xkey, xlist.mean()))
- xpaths = {'RSPS' : 'output/search-cell-nas-bench-102/RANDOM-NAS-cifar10/checkpoint/',
- 'DARTS-V1': 'output/search-cell-nas-bench-102/DARTS-V1-cifar10/checkpoint/',
- 'DARTS-V2': 'output/search-cell-nas-bench-102/DARTS-V2-cifar10/checkpoint/',
- 'GDAS' : 'output/search-cell-nas-bench-102/GDAS-cifar10/checkpoint/',
- 'SETN' : 'output/search-cell-nas-bench-102/SETN-cifar10/checkpoint/',
- 'ENAS' : 'output/search-cell-nas-bench-102/ENAS-cifar10/checkpoint/',
+ xpaths = {'RSPS' : 'output/search-cell-nas-bench-201/RANDOM-NAS-cifar10/checkpoint/',
+ 'DARTS-V1': 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/',
+ 'DARTS-V2': 'output/search-cell-nas-bench-201/DARTS-V2-cifar10/checkpoint/',
+ 'GDAS' : 'output/search-cell-nas-bench-201/GDAS-cifar10/checkpoint/',
+ 'SETN' : 'output/search-cell-nas-bench-201/SETN-cifar10/checkpoint/',
+ 'ENAS' : 'output/search-cell-nas-bench-201/ENAS-cifar10/checkpoint/',
}
xseeds = {'RSPS' : [5349, 59613, 5983],
'DARTS-V1': [11416, 72873, 81184],
'DARTS-V2': [43330, 79405, 79423],
'GDAS' : [19677, 884, 95950],
'SETN' : [20518, 61817, 89144],
- 'ENAS' : [30801, 75610, 97745],
+ 'ENAS' : [3231, 34238, 96929],
}
def get_accs(xdata, index=-1):
@@ -480,24 +533,27 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, file_name, y_lims, x_
plt.xlabel('The searching epoch', fontsize=LabelSize)
plt.ylabel('The accuracy (%)', fontsize=LabelSize)
- xpaths = {'RSPS' : 'output/search-cell-nas-bench-102/RANDOM-NAS-cifar10/checkpoint/',
- 'DARTS-V1': 'output/search-cell-nas-bench-102/DARTS-V1-cifar10/checkpoint/',
- 'DARTS-V2': 'output/search-cell-nas-bench-102/DARTS-V2-cifar10/checkpoint/',
- 'GDAS' : 'output/search-cell-nas-bench-102/GDAS-cifar10/checkpoint/',
- 'SETN' : 'output/search-cell-nas-bench-102/SETN-cifar10/checkpoint/',
- 'ENAS' : 'output/search-cell-nas-bench-102/ENAS-cifar10/checkpoint/',
+ xpaths = {'RSPS' : 'output/search-cell-nas-bench-201/RANDOM-NAS-cifar10/checkpoint/',
+ 'DARTS-V1': 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/',
+ 'DARTS-V2': 'output/search-cell-nas-bench-201/DARTS-V2-cifar10/checkpoint/',
+ 'GDAS' : 'output/search-cell-nas-bench-201/GDAS-cifar10/checkpoint/',
+ 'SETN' : 'output/search-cell-nas-bench-201/SETN-cifar10/checkpoint/',
+ 'ENAS' : 'output/search-cell-nas-bench-201/ENAS-cifar10/checkpoint/',
}
xseeds = {'RSPS' : [5349, 59613, 5983],
- 'DARTS-V1': [11416, 72873, 81184],
+ 'DARTS-V1': [11416, 72873, 81184, 28640],
'DARTS-V2': [43330, 79405, 79423],
'GDAS' : [19677, 884, 95950],
'SETN' : [20518, 61817, 89144],
- 'ENAS' : [30801, 75610, 97745],
+ 'ENAS' : [3231, 34238, 96929],
}
def get_accs(xdata):
epochs, xresults = xdata['epoch'], []
- metrics = api.arch2infos_full[ api.random() ].get_metrics(dataset, subset, None, False)
+ if -1 in xdata['genotypes']:
+ metrics = api.arch2infos_full[ api.query_index_by_arch(xdata['genotypes'][-1]) ].get_metrics(dataset, subset, None, False)
+ else:
+ metrics = api.arch2infos_full[ api.random() ].get_metrics(dataset, subset, None, False)
xresults.append( metrics['accuracy'] )
for iepoch in range(epochs):
genotype = xdata['genotypes'][iepoch]
@@ -528,12 +584,120 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, file_name, y_lims, x_
fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf')
+def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, file_name, y_lims, x_maxs):
+ color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k']
+ dpi, width, height = 300, 3400, 2600
+ LabelSize, LegendFontsize = 28, 28
+ figsize = width / float(dpi), height / float(dpi)
+ fig = plt.figure(figsize=figsize)
+ #x_maxs = 250
+ plt.xlim(0, x_maxs+1)
+ plt.ylim(y_lims[0], y_lims[1])
+ interval_x, interval_y = x_maxs // 5, y_lims[2]
+ plt.xticks(np.arange(0, x_maxs+1, interval_x), fontsize=LegendFontsize)
+ plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize)
+ plt.grid()
+ plt.xlabel('The searching epoch', fontsize=LabelSize)
+ plt.ylabel('The accuracy (%)', fontsize=LabelSize)
+
+ xpaths = {'RSPS' : 'output/search-cell-nas-bench-201/RANDOM-NAS-cifar10/checkpoint/',
+ 'DARTS-V1': 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/',
+ 'DARTS-V2': 'output/search-cell-nas-bench-201/DARTS-V2-cifar10/checkpoint/',
+ 'GDAS' : 'output/search-cell-nas-bench-201/GDAS-cifar10/checkpoint/',
+ 'SETN' : 'output/search-cell-nas-bench-201/SETN-cifar10/checkpoint/',
+ 'ENAS' : 'output/search-cell-nas-bench-201/ENAS-cifar10/checkpoint/',
+ }
+ xseeds = {'RSPS' : [5349, 59613, 5983],
+ 'DARTS-V1': [11416, 72873, 81184, 28640],
+ 'DARTS-V2': [43330, 79405, 79423],
+ 'GDAS' : [19677, 884, 95950],
+ 'SETN' : [20518, 61817, 89144],
+ 'ENAS' : [3231, 34238, 96929],
+ }
+
+ def get_accs(xdata, dataset, subset):
+ epochs, xresults = xdata['epoch'], []
+ if -1 in xdata['genotypes']:
+ metrics = api.arch2infos_full[ api.query_index_by_arch(xdata['genotypes'][-1]) ].get_metrics(dataset, subset, None, False)
+ else:
+ metrics = api.arch2infos_full[ api.random() ].get_metrics(dataset, subset, None, False)
+ xresults.append( metrics['accuracy'] )
+ for iepoch in range(epochs):
+ genotype = xdata['genotypes'][iepoch]
+ index = api.query_index_by_arch(genotype)
+ metrics = api.arch2infos_full[index].get_metrics(dataset, subset, None, False)
+ xresults.append( metrics['accuracy'] )
+ return xresults
+
+ if x_maxs == 50:
+ xox, xxxstrs = 'v2', ['DARTS-V1', 'DARTS-V2']
+ elif x_maxs == 250:
+ xox, xxxstrs = 'v1', ['RSPS', 'GDAS', 'SETN', 'ENAS']
+ else: raise ValueError('invalid x_maxs={:}'.format(x_maxs))
+
+ for idx, method in enumerate(xxxstrs):
+ xkey = method
+ all_paths = [ '{:}/seed-{:}-basic.pth'.format(xpaths[xkey], seed) for seed in xseeds[xkey] ]
+ all_datas = [torch.load(xpath, map_location='cpu') for xpath in all_paths]
+ accyss_A = np.array( [get_accs(xdatas, data_sub_a[0], data_sub_a[1]) for xdatas in all_datas] )
+ accyss_B = np.array( [get_accs(xdatas, data_sub_b[0], data_sub_b[1]) for xdatas in all_datas] )
+ epochs = list(range(accyss_A.shape[1]))
+ for j, accyss in enumerate([accyss_A, accyss_B]):
+ plt.plot(epochs, [accyss[:,i].mean() for i in epochs], color=color_set[idx*2+j], linestyle='-' if j==0 else '--', label='{:} ({:})'.format(method, 'VALID' if j == 0 else 'TEST'), lw=2, alpha=0.9)
+ plt.fill_between(epochs, [accyss[:,i].mean()-accyss[:,i].std() for i in epochs], [accyss[:,i].mean()+accyss[:,i].std() for i in epochs], alpha=0.2, color=color_set[idx*2+j])
+ #plt.legend(loc=4, fontsize=LegendFontsize)
+ plt.legend(loc=0, fontsize=LegendFontsize)
+ save_path = vis_save_dir / '{:}-{:}'.format(xox, file_name)
+ print('save figure into {:}\n'.format(save_path))
+ fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf')
+
+
+def show_reinforce(api, root, dataset, xset, file_name, y_lims):
+ print ('root-path={:}, dataset={:}, xset={:}'.format(root, dataset, xset))
+ LRs = ['0.01', '0.02', '0.1', '0.2', '0.5', '1.0', '1.5', '2.0', '2.5', '3.0']
+ checkpoints = ['./output/search-cell-nas-bench-201/REINFORCE-cifar10-{:}/results.pth'.format(x) for x in LRs]
+ acc_lr_dict, indexes = {}, None
+ for lr, checkpoint in zip(LRs, checkpoints):
+ all_indexes, accuracies = torch.load(checkpoint, map_location='cpu'), []
+ for x in all_indexes:
+ info = api.arch2infos_full[ x ]
+ metrics = info.get_metrics(dataset, xset, None, False)
+ accuracies.append( metrics['accuracy'] )
+ if indexes is None: indexes = list(range(len(accuracies)))
+ acc_lr_dict[lr] = np.array( sorted(accuracies) )
+ print ('LR={:.3f}, mean={:}, std={:}'.format(float(lr), acc_lr_dict[lr].mean(), acc_lr_dict[lr].std()))
+
+ color_set = ['r', 'b', 'g', 'c', 'm', 'y', 'k']
+ dpi, width, height = 300, 3400, 2600
+ LabelSize, LegendFontsize = 28, 22
+ figsize = width / float(dpi), height / float(dpi)
+ fig = plt.figure(figsize=figsize)
+ x_axis = np.arange(0, 600)
+ plt.xlim(0, max(indexes))
+ plt.ylim(y_lims[0], y_lims[1])
+ interval_x, interval_y = 100, y_lims[2]
+ plt.xticks(np.arange(0, max(indexes), interval_x), fontsize=LegendFontsize)
+ plt.yticks(np.arange(y_lims[0],y_lims[1], interval_y), fontsize=LegendFontsize)
+ plt.grid()
+ plt.xlabel('The index of runs', fontsize=LabelSize)
+ plt.ylabel('The accuracy (%)', fontsize=LabelSize)
+
+ for idx, LR in enumerate(LRs):
+ legend = 'LR={:.2f}'.format(float(LR))
+ color, linestyle = color_set[idx // 2], '-' if idx % 2 == 0 else '-.'
+ plt.plot(indexes, acc_lr_dict[LR], color=color, linestyle=linestyle, label=legend, lw=2, alpha=0.8)
+ print ('{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}'.format(legend, np.mean(acc_lr_dict[LR]), np.std(acc_lr_dict[LR]), np.mean(acc_lr_dict[LR]), np.std(acc_lr_dict[LR])))
+ plt.legend(loc=4, fontsize=LegendFontsize)
+ save_path = root / '{:}-{:}-{:}.pdf'.format(dataset, xset, file_name)
+ print('save figure into {:}\n'.format(save_path))
+ fig.savefig(str(save_path), dpi=dpi, bbox_inches='tight', format='pdf')
+
if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='NAS-Bench-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- parser.add_argument('--save_dir', type=str, default='./output/search-cell-nas-bench-102/visuals', help='The base-name of folder to save checkpoints and log.')
- parser.add_argument('--api_path', type=str, default=None, help='The path to the NAS-Bench-102 benchmark file.')
+ parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+ parser.add_argument('--save_dir', type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.')
+ parser.add_argument('--api_path', type=str, default=None, help='The path to the NAS-Bench-201 benchmark file.')
args = parser.parse_args()
vis_save_dir = Path(args.save_dir)
@@ -548,6 +712,9 @@ if __name__ == '__main__':
#visualize_relative_ranking(vis_save_dir)
api = API(args.api_path)
+ show_reinforce(api, vis_save_dir, 'cifar10-valid' , 'x-valid', 'REINFORCE-CIFAR-10', (75, 95, 5))
+ import pdb; pdb.set_trace()
+
for x_maxs in [50, 250]:
show_nas_sharing_w(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
show_nas_sharing_w(api, 'cifar10' , 'ori-test', vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
@@ -555,12 +722,19 @@ if __name__ == '__main__':
show_nas_sharing_w(api, 'cifar100' , 'x-test' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
show_nas_sharing_w(api, 'ImageNet16-120', 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
show_nas_sharing_w(api, 'ImageNet16-120', 'x-test' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)
+
+ show_nas_sharing_w_v2(api, ('cifar10-valid' , 'x-valid'), ('cifar10' , 'ori-test') , vis_save_dir, 'DARTS-CIFAR010.pdf', (0, 100,10), 50)
+ show_nas_sharing_w_v2(api, ('cifar100' , 'x-valid'), ('cifar100' , 'x-test' ) , vis_save_dir, 'DARTS-CIFAR100.pdf', (0, 100,10), 50)
+ show_nas_sharing_w_v2(api, ('ImageNet16-120', 'x-valid'), ('ImageNet16-120', 'x-test' ) , vis_save_dir, 'DARTS-ImageNet.pdf', (0, 100,10), 50)
+ #just_show(api)
"""
- just_show(api)
plot_results_nas(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-com.pdf', (85,95, 1))
plot_results_nas(api, 'cifar10' , 'ori-test', vis_save_dir, 'nas-com.pdf', (85,95, 1))
plot_results_nas(api, 'cifar100' , 'x-valid' , vis_save_dir, 'nas-com.pdf', (55,75, 3))
plot_results_nas(api, 'cifar100' , 'x-test' , vis_save_dir, 'nas-com.pdf', (55,75, 3))
plot_results_nas(api, 'ImageNet16-120', 'x-valid' , vis_save_dir, 'nas-com.pdf', (35,50, 3))
plot_results_nas(api, 'ImageNet16-120', 'x-test' , vis_save_dir, 'nas-com.pdf', (35,50, 3))
+ plot_results_nas_v2(api, ('cifar10-valid' , 'x-valid'), ('cifar10' , 'ori-test'), vis_save_dir, 'nas-com-v2-cifar010.pdf', (85,95, 1))
+ plot_results_nas_v2(api, ('cifar100' , 'x-valid'), ('cifar100' , 'x-test' ), vis_save_dir, 'nas-com-v2-cifar100.pdf', (60,75, 3))
+ plot_results_nas_v2(api, ('ImageNet16-120', 'x-valid'), ('ImageNet16-120', 'x-test' ), vis_save_dir, 'nas-com-v2-imagenet.pdf', (35,48, 2))
"""
diff --git a/exps/algos/BOHB.py b/exps/algos/BOHB.py
index 4fc30b4..5398f79 100644
--- a/exps/algos/BOHB.py
+++ b/exps/algos/BOHB.py
@@ -1,9 +1,10 @@
##################################################
-# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
-##################################################
-# required to install hpbandster #################
-# bash ./scripts-search/algos/BOHB.sh -1 #
-##################################################
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
+###################################################################
+# BOHB: Robust and Efficient Hyperparameter Optimization at Scale #
+# required to install hpbandster ##################################
+# bash ./scripts-search/algos/BOHB.sh -1 ##################
+###################################################################
import os, sys, time, glob, random, argparse
import numpy as np, collections
from copy import deepcopy
@@ -17,7 +18,7 @@ from datasets import get_datasets, SearchDataset
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
-from nas_102_api import NASBench102API as API
+from nas_201_api import NASBench201API as API
from models import CellStructure, get_search_spaces
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
import ConfigSpace
diff --git a/exps/algos/DARTS-V1.py b/exps/algos/DARTS-V1.py
index 870f97b..9806b90 100644
--- a/exps/algos/DARTS-V1.py
+++ b/exps/algos/DARTS-V1.py
@@ -1,5 +1,5 @@
##################################################
-# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
########################################################
# DARTS: Differentiable Architecture Search, ICLR 2019 #
########################################################
@@ -17,7 +17,7 @@ from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_che
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
-from nas_102_api import NASBench102API as API
+from nas_201_api import NASBench201API as API
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger):
diff --git a/exps/algos/DARTS-V2.py b/exps/algos/DARTS-V2.py
index 3893bcb..beec424 100644
--- a/exps/algos/DARTS-V2.py
+++ b/exps/algos/DARTS-V2.py
@@ -1,5 +1,5 @@
##################################################
-# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
########################################################
# DARTS: Differentiable Architecture Search, ICLR 2019 #
########################################################
@@ -17,7 +17,7 @@ from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_che
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
-from nas_102_api import NASBench102API as API
+from nas_201_api import NASBench201API as API
def _concat(xs):
diff --git a/exps/algos/ENAS.py b/exps/algos/ENAS.py
index 71ef2f7..8487dfa 100644
--- a/exps/algos/ENAS.py
+++ b/exps/algos/ENAS.py
@@ -1,6 +1,8 @@
##################################################
-# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
-##################################################
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
+##########################################################################
+# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
+##########################################################################
import os, sys, time, glob, random, argparse
import numpy as np
from copy import deepcopy
@@ -15,7 +17,7 @@ from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_che
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
-from nas_102_api import NASBench102API as API
+from nas_201_api import NASBench201API as API
def train_shared_cnn(xloader, shared_cnn, controller, criterion, scheduler, optimizer, epoch_str, print_freq, logger):
diff --git a/exps/algos/GDAS.py b/exps/algos/GDAS.py
index eed6410..ad70543 100644
--- a/exps/algos/GDAS.py
+++ b/exps/algos/GDAS.py
@@ -1,5 +1,5 @@
##################################################
-# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
###########################################################################
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
###########################################################################
@@ -17,7 +17,7 @@ from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_che
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
-from nas_102_api import NASBench102API as API
+from nas_201_api import NASBench201API as API
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger):
diff --git a/exps/algos/RANDOM-NAS.py b/exps/algos/RANDOM-NAS.py
index b06a570..cd865a6 100644
--- a/exps/algos/RANDOM-NAS.py
+++ b/exps/algos/RANDOM-NAS.py
@@ -1,6 +1,8 @@
##################################################
-# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
-##################################################
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
+##############################################################################
+# Random Search and Reproducibility for Neural Architecture Search, UAI 2019 #
+##############################################################################
import os, sys, time, glob, random, argparse
import numpy as np
from copy import deepcopy
@@ -15,7 +17,7 @@ from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_che
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
-from nas_102_api import NASBench102API as API
+from nas_201_api import NASBench201API as API
def search_func(xloader, network, criterion, scheduler, w_optimizer, epoch_str, print_freq, logger):
diff --git a/exps/algos/RANDOM.py b/exps/algos/RANDOM.py
index 7bf3fcc..62018a4 100644
--- a/exps/algos/RANDOM.py
+++ b/exps/algos/RANDOM.py
@@ -1,6 +1,6 @@
##################################################
-# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
-##################################################
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
+##############################################################################
import os, sys, time, glob, random, argparse
import numpy as np, collections
from copy import deepcopy
@@ -15,7 +15,7 @@ from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_che
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_search_spaces
-from nas_102_api import NASBench102API as API
+from nas_201_api import NASBench201API as API
from R_EA import train_and_eval, random_architecture_func
diff --git a/exps/algos/R_EA.py b/exps/algos/R_EA.py
index 49b104c..e421e90 100644
--- a/exps/algos/R_EA.py
+++ b/exps/algos/R_EA.py
@@ -1,5 +1,5 @@
##################################################
-# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
##################################################################
# Regularized Evolution for Image Classifier Architecture Search #
##################################################################
@@ -16,7 +16,7 @@ from datasets import get_datasets, SearchDataset
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
-from nas_102_api import NASBench102API as API
+from nas_201_api import NASBench201API as API
from models import CellStructure, get_search_spaces
@@ -31,30 +31,8 @@ class Model(object):
return '{:}'.format(self.arch)
-def valid_func(xloader, network, criterion):
- data_time, batch_time = AverageMeter(), AverageMeter()
- arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
- network.train()
- end = time.time()
- with torch.no_grad():
- for step, (arch_inputs, arch_targets) in enumerate(xloader):
- arch_targets = arch_targets.cuda(non_blocking=True)
- # measure data loading time
- data_time.update(time.time() - end)
- # prediction
- _, logits = network(arch_inputs)
- arch_loss = criterion(logits, arch_targets)
- # record
- arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
- arch_losses.update(arch_loss.item(), arch_inputs.size(0))
- arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
- arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
- # measure elapsed time
- batch_time.update(time.time() - end)
- end = time.time()
- return arch_losses.avg, arch_top1.avg, arch_top5.avg
-
-
+# This function is to mimic the training and evaluatinig procedure for a single architecture `arch`.
+# The time_cost is calculated as the total training time for a few (e.g., 12 epochs) plus the evaluation time for one epoch.
def train_and_eval(arch, nas_bench, extra_info):
if nas_bench is not None:
arch_index = nas_bench.query_index_by_arch( arch )
diff --git a/exps/algos/SETN.py b/exps/algos/SETN.py
index 4aae592..68321ec 100644
--- a/exps/algos/SETN.py
+++ b/exps/algos/SETN.py
@@ -1,5 +1,5 @@
##################################################
-# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
######################################################################################
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
######################################################################################
@@ -17,7 +17,7 @@ from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_che
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
-from nas_102_api import NASBench102API as API
+from nas_201_api import NASBench201API as API
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger):
diff --git a/exps/algos/reinforce.py b/exps/algos/reinforce.py
index 9c62828..3df05ca 100644
--- a/exps/algos/reinforce.py
+++ b/exps/algos/reinforce.py
@@ -17,7 +17,7 @@ from datasets import get_datasets, SearchDataset
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
-from nas_102_api import NASBench102API as API
+from nas_201_api import NASBench201API as API
from models import CellStructure, get_search_spaces
from R_EA import train_and_eval
@@ -128,6 +128,7 @@ def main(xargs, nas_bench):
search_space = get_search_spaces('cell', xargs.search_space_name)
policy = Policy(xargs.max_nodes, search_space)
optimizer = torch.optim.Adam(policy.parameters(), lr=xargs.learning_rate)
+ #optimizer = torch.optim.SGD(policy.parameters(), lr=xargs.learning_rate)
eps = np.finfo(np.float32).eps.item()
baseline = ExponentialMovingAverage(xargs.EMA_momentum)
logger.log('policy : {:}'.format(policy))
@@ -141,13 +142,14 @@ def main(xargs, nas_bench):
# attempts = 0
x_start_time = time.time()
logger.log('Will start searching with time budget of {:} s.'.format(xargs.time_budget))
- total_steps, total_costs = 0, 0
+ total_steps, total_costs, trace = 0, 0, []
#for istep in range(xargs.RL_steps):
while total_costs < xargs.time_budget:
start_time = time.time()
log_prob, action = select_action( policy )
arch = policy.generate_arch( action )
reward, cost_time = train_and_eval(arch, nas_bench, extra_info)
+ trace.append( (reward, arch) )
# accumulate time
if total_costs + cost_time < xargs.time_budget:
total_costs += cost_time
@@ -166,7 +168,8 @@ def main(xargs, nas_bench):
#logger.log('----> {:}'.format(policy.arch_parameters))
#logger.log('')
- best_arch = policy.genotype()
+ # best_arch = policy.genotype() # first version
+ best_arch = max(trace, key=lambda x: x[0])[1]
logger.log('REINFORCE finish with {:} steps and {:.1f} s (real cost={:.3f}).'.format(total_steps, total_costs, time.time()-x_start_time))
info = nas_bench.query_by_arch( best_arch )
if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
diff --git a/exps/vis/test.py b/exps/vis/test.py
index 6c2c566..6fdecd4 100644
--- a/exps/vis/test.py
+++ b/exps/vis/test.py
@@ -8,11 +8,11 @@ from collections import OrderedDict
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
-from nas_102_api import NASBench102API as API
+from nas_201_api import NASBench201API as API
def test_nas_api():
- from nas_102_api import ArchResults
- xdata = torch.load('/home/dxy/FOR-RELEASE/NAS-Projects/output/NAS-BENCH-102-4/simplifies/architectures/000157-FULL.pth')
+ from nas_201_api import ArchResults
+ xdata = torch.load('/home/dxy/FOR-RELEASE/NAS-Projects/output/NAS-BENCH-201-4/simplifies/architectures/000157-FULL.pth')
for key in ['full', 'less']:
print ('\n------------------------- {:} -------------------------'.format(key))
archRes = ArchResults.create_from_state_dict(xdata[key])
@@ -81,8 +81,8 @@ def test_one_shot_model(ckpath, use_train):
from config_utils import load_config, dict2config
from utils.nas_utils import evaluate_one_shot
use_train = int(use_train) > 0
- #ckpath = 'output/search-cell-nas-bench-102/DARTS-V1-cifar10/checkpoint/seed-11416-basic.pth'
- #ckpath = 'output/search-cell-nas-bench-102/DARTS-V1-cifar10/checkpoint/seed-28640-basic.pth'
+ #ckpath = 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/seed-11416-basic.pth'
+ #ckpath = 'output/search-cell-nas-bench-201/DARTS-V1-cifar10/checkpoint/seed-28640-basic.pth'
print ('ckpath : {:}'.format(ckpath))
ckp = torch.load(ckpath)
xargs = ckp['args']
@@ -103,7 +103,7 @@ def test_one_shot_model(ckpath, use_train):
search_model = get_cell_based_tiny_net(model_config)
search_model.load_state_dict( ckp['search_model'] )
search_model = search_model.cuda()
- api = API('/home/dxy/.torch/NAS-Bench-102-v1_0-e61699.pth')
+ api = API('/home/dxy/.torch/NAS-Bench-201-v1_0-e61699.pth')
archs, probs, accuracies = evaluate_one_shot(search_model, valid_loader, api, use_train)
diff --git a/lib/config_utils/basic_args.py b/lib/config_utils/basic_args.py
index dc6d78c..22a414f 100644
--- a/lib/config_utils/basic_args.py
+++ b/lib/config_utils/basic_args.py
@@ -1,5 +1,5 @@
##################################################
-# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
##################################################
import os, sys, time, random, argparse
from .share_args import add_shared_args
diff --git a/lib/models/__init__.py b/lib/models/__init__.py
index 0dda072..34087b4 100644
--- a/lib/models/__init__.py
+++ b/lib/models/__init__.py
@@ -19,7 +19,7 @@ def get_cell_based_tiny_net(config):
super_type = getattr(config, 'super_type', 'basic')
group_names = ['DARTS-V1', 'DARTS-V2', 'GDAS', 'SETN', 'ENAS', 'RANDOM']
if super_type == 'basic' and config.name in group_names:
- from .cell_searchs import nas102_super_nets as nas_super_nets
+ from .cell_searchs import nas201_super_nets as nas_super_nets
try:
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space, config.affine, config.track_running_stats)
except:
diff --git a/lib/models/cell_infers/cells.py b/lib/models/cell_infers/cells.py
index d881cba..62bb79e 100644
--- a/lib/models/cell_infers/cells.py
+++ b/lib/models/cell_infers/cells.py
@@ -1,8 +1,13 @@
+##################################################
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
+##################################################
+
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import OPS
+# Cell for NAS-Bench-201
class InferCell(nn.Module):
def __init__(self, genotype, C_in, C_out, stride):
diff --git a/lib/models/cell_infers/tiny_network.py b/lib/models/cell_infers/tiny_network.py
index 818948c..f7994f7 100644
--- a/lib/models/cell_infers/tiny_network.py
+++ b/lib/models/cell_infers/tiny_network.py
@@ -1,9 +1,13 @@
+##################################################
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
+##################################################
import torch
import torch.nn as nn
from ..cell_operations import ResNetBasicblock
from .cells import InferCell
+# The macro structure for architectures in NAS-Bench-201
class TinyNetwork(nn.Module):
def __init__(self, C, N, genotype, num_classes):
diff --git a/lib/models/cell_operations.py b/lib/models/cell_operations.py
index 4829507..021bdef 100644
--- a/lib/models/cell_operations.py
+++ b/lib/models/cell_operations.py
@@ -21,12 +21,11 @@ OPS = {
}
CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3']
-NAS_BENCH_102 = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
+NAS_BENCH_201 = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
DARTS_SPACE = ['none', 'skip_connect', 'dua_sepc_3x3', 'dua_sepc_5x5', 'dil_sepc_3x3', 'dil_sepc_5x5', 'avg_pool_3x3', 'max_pool_3x3']
SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK,
- 'aa-nas' : NAS_BENCH_102,
- 'nas-bench-102': NAS_BENCH_102,
+ 'nas-bench-201': NAS_BENCH_201,
'darts' : DARTS_SPACE}
diff --git a/lib/models/cell_searchs/__init__.py b/lib/models/cell_searchs/__init__.py
index 234b7e0..ee95336 100644
--- a/lib/models/cell_searchs/__init__.py
+++ b/lib/models/cell_searchs/__init__.py
@@ -1,7 +1,7 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
-# The macro structure is defined in NAS-Bench-102
+# The macro structure is defined in NAS-Bench-201
from .search_model_darts import TinyNetworkDarts
from .search_model_gdas import TinyNetworkGDAS
from .search_model_setn import TinyNetworkSETN
@@ -12,7 +12,7 @@ from .genotypes import Structure as CellStructure, architectures as
from .search_model_gdas_nasnet import NASNetworkGDAS
-nas102_super_nets = {'DARTS-V1': TinyNetworkDarts,
+nas201_super_nets = {'DARTS-V1': TinyNetworkDarts,
'DARTS-V2': TinyNetworkDarts,
'GDAS' : TinyNetworkGDAS,
'SETN' : TinyNetworkSETN,
diff --git a/lib/models/cell_searchs/search_cells.py b/lib/models/cell_searchs/search_cells.py
index 8724756..60a7cee 100644
--- a/lib/models/cell_searchs/search_cells.py
+++ b/lib/models/cell_searchs/search_cells.py
@@ -9,11 +9,11 @@ from copy import deepcopy
from ..cell_operations import OPS
-# This module is used for NAS-Bench-102, represents a small search space with a complete DAG
-class NAS102SearchCell(nn.Module):
+# This module is used for NAS-Bench-201, represents a small search space with a complete DAG
+class NAS201SearchCell(nn.Module):
def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False, track_running_stats=True):
- super(NAS102SearchCell, self).__init__()
+ super(NAS201SearchCell, self).__init__()
self.op_names = deepcopy(op_names)
self.edges = nn.ModuleDict()
diff --git a/lib/models/cell_searchs/search_model_darts.py b/lib/models/cell_searchs/search_model_darts.py
index 3480062..fd6f4cf 100644
--- a/lib/models/cell_searchs/search_model_darts.py
+++ b/lib/models/cell_searchs/search_model_darts.py
@@ -7,7 +7,7 @@ import torch
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
-from .search_cells import NAS102SearchCell as SearchCell
+from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
diff --git a/lib/models/cell_searchs/search_model_enas.py b/lib/models/cell_searchs/search_model_enas.py
index 701e022..58aca9c 100644
--- a/lib/models/cell_searchs/search_model_enas.py
+++ b/lib/models/cell_searchs/search_model_enas.py
@@ -7,7 +7,7 @@ import torch
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
-from .search_cells import NAS102SearchCell as SearchCell
+from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
from .search_model_enas_utils import Controller
diff --git a/lib/models/cell_searchs/search_model_gdas.py b/lib/models/cell_searchs/search_model_gdas.py
index bc19f29..0400922 100644
--- a/lib/models/cell_searchs/search_model_gdas.py
+++ b/lib/models/cell_searchs/search_model_gdas.py
@@ -5,7 +5,7 @@ import torch
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
-from .search_cells import NAS102SearchCell as SearchCell
+from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
diff --git a/lib/models/cell_searchs/search_model_random.py b/lib/models/cell_searchs/search_model_random.py
index bddeac3..3345577 100644
--- a/lib/models/cell_searchs/search_model_random.py
+++ b/lib/models/cell_searchs/search_model_random.py
@@ -7,7 +7,7 @@ import torch, random
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
-from .search_cells import NAS102SearchCell as SearchCell
+from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
diff --git a/lib/models/cell_searchs/search_model_setn.py b/lib/models/cell_searchs/search_model_setn.py
index 6ecd9b0..3df35b6 100644
--- a/lib/models/cell_searchs/search_model_setn.py
+++ b/lib/models/cell_searchs/search_model_setn.py
@@ -7,7 +7,7 @@ import torch, random
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
-from .search_cells import NAS102SearchCell as SearchCell
+from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
diff --git a/lib/nas_102_api/__init__.py b/lib/nas_201_api/__init__.py
similarity index 75%
rename from lib/nas_102_api/__init__.py
rename to lib/nas_201_api/__init__.py
index 396ce9b..092fb9e 100644
--- a/lib/nas_102_api/__init__.py
+++ b/lib/nas_201_api/__init__.py
@@ -1,7 +1,7 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
-from .api import NASBench102API
+from .api import NASBench201API
from .api import ArchResults, ResultsCount
-NAS_BENCH_102_API_VERSION="v1.0"
+NAS_BENCH_201_API_VERSION="v1.0"
diff --git a/lib/nas_102_api/api.py b/lib/nas_201_api/api.py
similarity index 99%
rename from lib/nas_102_api/api.py
rename to lib/nas_201_api/api.py
index e9f8c89..556bc74 100644
--- a/lib/nas_102_api/api.py
+++ b/lib/nas_201_api/api.py
@@ -1,9 +1,9 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
############################################################################################
-# NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 #
+# NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 #
############################################################################################
-# NAS-Bench-102-v1_0-e61699.pth : 6219 architectures are trained once, 1621 architectures are trained twice, 7785 architectures are trained three times. `LESS` only supports CIFAR10-VALID.
+# NAS-Bench-201-v1_0-e61699.pth : 6219 architectures are trained once, 1621 architectures are trained twice, 7785 architectures are trained three times. `LESS` only supports CIFAR10-VALID.
#
#
#
@@ -38,11 +38,11 @@ def print_information(information, extra_info=None, show=False):
return strings
-class NASBench102API(object):
+class NASBench201API(object):
def __init__(self, file_path_or_dict, verbose=True):
if isinstance(file_path_or_dict, str):
- if verbose: print('try to create the NAS-Bench-102 api from {:}'.format(file_path_or_dict))
+ if verbose: print('try to create the NAS-Bench-201 api from {:}'.format(file_path_or_dict))
assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict)
file_path_or_dict = torch.load(file_path_or_dict)
elif isinstance(file_path_or_dict, dict):
diff --git a/lib/nas_infer_model/DXYs/__init__.py b/lib/nas_infer_model/DXYs/__init__.py
index 6795a41..3f1f718 100644
--- a/lib/nas_infer_model/DXYs/__init__.py
+++ b/lib/nas_infer_model/DXYs/__init__.py
@@ -2,3 +2,4 @@
from .CifarNet import NetworkCIFAR as CifarNet
from .ImageNet import NetworkImageNet as ImageNet
from .genotypes import Networks
+from .genotypes import build_genotype_from_dict
diff --git a/lib/nas_infer_model/DXYs/genotypes.py b/lib/nas_infer_model/DXYs/genotypes.py
index 8e77b0a..ec1f449 100644
--- a/lib/nas_infer_model/DXYs/genotypes.py
+++ b/lib/nas_infer_model/DXYs/genotypes.py
@@ -167,3 +167,6 @@ Networks = {'DARTS_V1': DARTS_V1,
'PNASNet' : PNASNet,
'SETN' : SETN,
}
+
+def build_genotype_from_dict(xdict):
+ import pdb; pdb.set_trace()
diff --git a/lib/nas_infer_model/__init__.py b/lib/nas_infer_model/__init__.py
index aeda5b5..bb0d0e5 100644
--- a/lib/nas_infer_model/__init__.py
+++ b/lib/nas_infer_model/__init__.py
@@ -1,6 +1,11 @@
##################################################
-# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
+# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
##################################################
+# I write this package to make AutoDL-Projects to be compatible with the old GDAS projects.
+# Ideally, this package will be merged into lib/models/cell_infers in future.
+# Currently, this package is used to reproduce the results in GDAS (Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019).
+##################################################
+
import torch
def obtain_nas_infer_model(config):
diff --git a/lib/tf_models/cell_operations.py b/lib/tf_models/cell_operations.py
index a98e190..056c55e 100644
--- a/lib/tf_models/cell_operations.py
+++ b/lib/tf_models/cell_operations.py
@@ -14,10 +14,10 @@ OPS = {
'skip_connect': lambda C_in, C_out, stride, affine: Identity(C_in, C_out, stride)
}
-NAS_BENCH_102 = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
+NAS_BENCH_201 = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
SearchSpaceNames = {
- 'nas-bench-102': NAS_BENCH_102,
+ 'nas-bench-201': NAS_BENCH_201,
}
diff --git a/scripts-search/NAS-Bench-102/build.sh b/scripts-search/NAS-Bench-201/build.sh
similarity index 57%
rename from scripts-search/NAS-Bench-102/build.sh
rename to scripts-search/NAS-Bench-201/build.sh
index 0905130..fa87746 100644
--- a/scripts-search/NAS-Bench-102/build.sh
+++ b/scripts-search/NAS-Bench-201/build.sh
@@ -1,5 +1,5 @@
#!/bin/bash
-# bash scripts-search/NAS-Bench-102/build.sh
+# bash scripts-search/NAS-Bench-201/build.sh
echo script name: $0
echo $# arguments
if [ "$#" -ne 0 ] ;then
@@ -8,17 +8,17 @@ if [ "$#" -ne 0 ] ;then
exit 1
fi
-save_dir=./output/nas_bench_102_package
+save_dir=./output/nas_bench_201_package
echo "Prepare to build the package in ${save_dir}"
rm -rf ${save_dir}
mkdir -p ${save_dir}
-#cp NAS-Bench-102.md ${save_dir}/README.md
-sed '125,187d' NAS-Bench-102.md > ${save_dir}/README.md
+#cp NAS-Bench-201.md ${save_dir}/README.md
+sed '125,187d' NAS-Bench-201.md > ${save_dir}/README.md
cp LICENSE.md ${save_dir}/LICENSE.md
-cp -r lib/nas_102_api ${save_dir}/
-rm -rf ${save_dir}/nas_102_api/__pycache__
-cp exps/NAS-Bench-102/dist-setup.py ${save_dir}/setup.py
+cp -r lib/nas_201_api ${save_dir}/
+rm -rf ${save_dir}/nas_201_api/__pycache__
+cp exps/NAS-Bench-201/dist-setup.py ${save_dir}/setup.py
cd ${save_dir}
# python setup.py sdist bdist_wheel
diff --git a/scripts-search/NAS-Bench-102/meta-gen.sh b/scripts-search/NAS-Bench-201/meta-gen.sh
similarity index 68%
rename from scripts-search/NAS-Bench-102/meta-gen.sh
rename to scripts-search/NAS-Bench-201/meta-gen.sh
index da9492f..a62d2a1 100644
--- a/scripts-search/NAS-Bench-102/meta-gen.sh
+++ b/scripts-search/NAS-Bench-201/meta-gen.sh
@@ -1,5 +1,5 @@
#!/bin/bash
-# bash scripts-search/NAS-Bench-102/meta-gen.sh NAS-BENCH-102 4
+# bash scripts-search/NAS-Bench-201/meta-gen.sh NAS-BENCH-201 4
echo script name: $0
echo $# arguments
if [ "$#" -ne 2 ] ;then
@@ -13,4 +13,4 @@ node=$2
save_dir=./output/${name}-${node}
-python ./exps/NAS-Bench-102/main.py --mode meta --save_dir ${save_dir} --max_node ${node}
+python ./exps/NAS-Bench-201/main.py --mode meta --save_dir ${save_dir} --max_node ${node}
diff --git a/scripts-search/NAS-Bench-102/train-a-net.sh b/scripts-search/NAS-Bench-201/train-a-net.sh
similarity index 83%
rename from scripts-search/NAS-Bench-102/train-a-net.sh
rename to scripts-search/NAS-Bench-201/train-a-net.sh
index ff0dc25..12eda2c 100644
--- a/scripts-search/NAS-Bench-102/train-a-net.sh
+++ b/scripts-search/NAS-Bench-201/train-a-net.sh
@@ -1,5 +1,5 @@
#!/bin/bash
-# bash ./scripts-search/NAS-Bench-102/train-a-net.sh resnet 16 5
+# bash ./scripts-search/NAS-Bench-201/train-a-net.sh resnet 16 5
echo script name: $0
echo $# arguments
if [ "$#" -ne 3 ] ;then
@@ -18,9 +18,9 @@ model=$1
channel=$2
num_cells=$3
-save_dir=./output/NAS-BENCH-102-4/
+save_dir=./output/NAS-BENCH-201-4/
-OMP_NUM_THREADS=4 python ./exps/NAS-Bench-102/main.py \
+OMP_NUM_THREADS=4 python ./exps/NAS-Bench-201/main.py \
--mode specific-${model} --save_dir ${save_dir} --max_node 4 \
--datasets cifar10 cifar10 cifar100 ImageNet16-120 \
--use_less 0 \
diff --git a/scripts-search/NAS-Bench-102/train-models.sh b/scripts-search/NAS-Bench-201/train-models.sh
similarity index 91%
rename from scripts-search/NAS-Bench-102/train-models.sh
rename to scripts-search/NAS-Bench-201/train-models.sh
index d71714b..f691f40 100644
--- a/scripts-search/NAS-Bench-102/train-models.sh
+++ b/scripts-search/NAS-Bench-201/train-models.sh
@@ -20,7 +20,7 @@ xend=$3
arch_index=$4
all_seeds=$5
-save_dir=./output/NAS-BENCH-102-4/
+save_dir=./output/NAS-BENCH-201-4/
if [ ${arch_index} == "-1" ]; then
mode=new
@@ -28,7 +28,7 @@ else
mode=cover
fi
-OMP_NUM_THREADS=4 python ./exps/NAS-Bench-102/main.py \
+OMP_NUM_THREADS=4 python ./exps/NAS-Bench-201/main.py \
--mode ${mode} --save_dir ${save_dir} --max_node 4 \
--use_less ${use_less} \
--datasets cifar10 cifar10 cifar100 ImageNet16-120 \
diff --git a/scripts-search/algos/BOHB.sh b/scripts-search/algos/BOHB.sh
index 124558f..fcefe96 100644
--- a/scripts-search/algos/BOHB.sh
+++ b/scripts-search/algos/BOHB.sh
@@ -19,7 +19,7 @@ seed=$1
channel=16
num_cells=5
max_nodes=4
-space=nas-bench-102
+space=nas-bench-201
save_dir=./output/search-cell-${space}/BOHB-${dataset}
@@ -27,7 +27,7 @@ OMP_NUM_THREADS=4 python ./exps/algos/BOHB.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} \
--search_space_name ${space} \
- --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \
+ --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \
--time_budget 12000 \
--n_iters 50 --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 \
--workers 4 --print_freq 200 --rand_seed ${seed}
diff --git a/scripts-search/algos/DARTS-V1.sh b/scripts-search/algos/DARTS-V1.sh
index f25f37a..7aedc7d 100644
--- a/scripts-search/algos/DARTS-V1.sh
+++ b/scripts-search/algos/DARTS-V1.sh
@@ -1,10 +1,10 @@
#!/bin/bash
-# bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1
+# bash ./scripts-search/algos/DARTS-V1.sh cifar10 0 -1
echo script name: $0
echo $# arguments
-if [ "$#" -ne 2 ] ;then
+if [ "$#" -ne 3 ] ;then
echo "Input illegal number of parameters " $#
- echo "Need 2 parameters for dataset and seed"
+ echo "Need 3 parameters for dataset, tracking_status, and seed"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
@@ -15,11 +15,12 @@ else
fi
dataset=$1
-seed=$2
+BN=$2
+seed=$3
channel=16
num_cells=5
max_nodes=4
-space=nas-bench-102
+space=nas-bench-201
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
data_path="$TORCH_HOME/cifar.python"
@@ -27,14 +28,14 @@ else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
-save_dir=./output/search-cell-${space}/DARTS-V1-${dataset}
+save_dir=./output/search-cell-${space}/DARTS-V1-${dataset}-BN${BN}
OMP_NUM_THREADS=4 python ./exps/algos/DARTS-V1.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} --data_path ${data_path} \
--search_space_name ${space} \
--config_path configs/nas-benchmark/algos/DARTS.config \
- --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \
- --track_running_stats 1 \
+ --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \
+ --track_running_stats ${BN} \
--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \
--workers 4 --print_freq 200 --rand_seed ${seed}
diff --git a/scripts-search/algos/DARTS-V2.sh b/scripts-search/algos/DARTS-V2.sh
index f6d17da..4670019 100644
--- a/scripts-search/algos/DARTS-V2.sh
+++ b/scripts-search/algos/DARTS-V2.sh
@@ -1,10 +1,10 @@
#!/bin/bash
-# bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1
+# bash ./scripts-search/algos/DARTS-V2.sh cifar10 0 -1
echo script name: $0
echo $# arguments
-if [ "$#" -ne 2 ] ;then
+if [ "$#" -ne 3 ] ;then
echo "Input illegal number of parameters " $#
- echo "Need 2 parameters for dataset and seed"
+ echo "Need 3 parameters for dataset, tracking_status, and seed"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
@@ -15,11 +15,12 @@ else
fi
dataset=$1
-seed=$2
+BN=$2
+seed=$3
channel=16
num_cells=5
max_nodes=4
-space=nas-bench-102
+space=nas-bench-201
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
data_path="$TORCH_HOME/cifar.python"
@@ -27,14 +28,14 @@ else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
-save_dir=./output/search-cell-${space}/DARTS-V2-${dataset}
+save_dir=./output/search-cell-${space}/DARTS-V2-${dataset}-BN${BN}
OMP_NUM_THREADS=4 python ./exps/algos/DARTS-V2.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} --data_path ${data_path} \
--search_space_name ${space} \
--config_path configs/nas-benchmark/algos/DARTS.config \
- --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \
- --track_running_stats 1 \
+ --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \
+ --track_running_stats ${BN} \
--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \
--workers 4 --print_freq 200 --rand_seed ${seed}
diff --git a/scripts-search/algos/ENAS.sh b/scripts-search/algos/ENAS.sh
index fc39361..783523a 100644
--- a/scripts-search/algos/ENAS.sh
+++ b/scripts-search/algos/ENAS.sh
@@ -1,11 +1,11 @@
#!/bin/bash
# Efficient Neural Architecture Search via Parameter Sharing, ICML 2018
-# bash ./scripts-search/scripts/algos/ENAS.sh cifar10 -1
+# bash ./scripts-search/scripts/algos/ENAS.sh cifar10 0 -1
echo script name: $0
echo $# arguments
-if [ "$#" -ne 2 ] ;then
+if [ "$#" -ne 3 ] ;then
echo "Input illegal number of parameters " $#
- echo "Need 2 parameters for dataset and seed"
+ echo "Need 3 parameters for dataset, BN-tracking-status, and seed"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
@@ -16,11 +16,12 @@ else
fi
dataset=$1
-seed=$2
+BN=$2
+seed=$3
channel=16
num_cells=5
max_nodes=4
-space=nas-bench-102
+space=nas-bench-201
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
data_path="$TORCH_HOME/cifar.python"
@@ -28,14 +29,14 @@ else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
-save_dir=./output/search-cell-${space}/ENAS-${dataset}
+save_dir=./output/search-cell-${space}/ENAS-${dataset}-BN${BN}
OMP_NUM_THREADS=4 python ./exps/algos/ENAS.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} --data_path ${data_path} \
--search_space_name ${space} \
- --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \
- --track_running_stats 1 \
+ --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \
+ --track_running_stats ${BN} \
--config_path ./configs/nas-benchmark/algos/ENAS.config \
--controller_entropy_weight 0.0001 \
--controller_bl_dec 0.99 \
diff --git a/scripts-search/algos/GDAS.sh b/scripts-search/algos/GDAS.sh
index 558e7dc..70f3c45 100644
--- a/scripts-search/algos/GDAS.sh
+++ b/scripts-search/algos/GDAS.sh
@@ -1,10 +1,10 @@
#!/bin/bash
-# bash ./scripts-search/algos/GDAS.sh cifar10 -1
+# bash ./scripts-search/algos/GDAS.sh cifar10 0 -1
echo script name: $0
echo $# arguments
-if [ "$#" -ne 2 ] ;then
+if [ "$#" -ne 3 ] ;then
echo "Input illegal number of parameters " $#
- echo "Need 2 parameters for dataset and seed"
+ echo "Need 3 parameters for dataset, BN-tracking, and seed"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
@@ -15,11 +15,12 @@ else
fi
dataset=$1
-seed=$2
+BN=$2
+seed=$3
channel=16
num_cells=5
max_nodes=4
-space=nas-bench-102
+space=nas-bench-201
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
data_path="$TORCH_HOME/cifar.python"
@@ -27,14 +28,14 @@ else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
-save_dir=./output/search-cell-${space}/GDAS-${dataset}
+save_dir=./output/search-cell-${space}/GDAS-${dataset}-BN${BN}
OMP_NUM_THREADS=4 python ./exps/algos/GDAS.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} --data_path ${data_path} \
--search_space_name ${space} \
- --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \
+ --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \
--config_path configs/nas-benchmark/algos/GDAS.config \
- --tau_max 10 --tau_min 0.1 --track_running_stats 1 \
+ --tau_max 10 --tau_min 0.1 --track_running_stats ${BN} \
--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \
--workers 4 --print_freq 200 --rand_seed ${seed}
diff --git a/scripts-search/algos/GRID-RL.sh b/scripts-search/algos/GRID-RL.sh
new file mode 100644
index 0000000..50384f6
--- /dev/null
+++ b/scripts-search/algos/GRID-RL.sh
@@ -0,0 +1,9 @@
+#!/bin/bash
+echo script name: $0
+
+lrs="0.01 0.02 0.1 0.2 0.5 1.0 1.5 2.0 2.5 3.0"
+
+for lr in ${lrs}
+do
+ bash ./scripts-search/algos/REINFORCE.sh ${lr} -1
+done
diff --git a/scripts-search/algos/R-EA.sh b/scripts-search/algos/R-EA.sh
index cfbd179..f208764 100644
--- a/scripts-search/algos/R-EA.sh
+++ b/scripts-search/algos/R-EA.sh
@@ -20,7 +20,7 @@ seed=$1
channel=16
num_cells=5
max_nodes=4
-space=nas-bench-102
+space=nas-bench-201
save_dir=./output/search-cell-${space}/R-EA-${dataset}
@@ -28,7 +28,7 @@ OMP_NUM_THREADS=4 python ./exps/algos/R_EA.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} \
--search_space_name ${space} \
- --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \
+ --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \
--time_budget 12000 \
--ea_cycles 100 --ea_population 10 --ea_sample_size 3 --ea_fast_by_api 1 \
--workers 4 --print_freq 200 --rand_seed ${seed}
diff --git a/scripts-search/algos/RANDOM-NAS.sh b/scripts-search/algos/RANDOM-NAS.sh
index d964958..35caf22 100644
--- a/scripts-search/algos/RANDOM-NAS.sh
+++ b/scripts-search/algos/RANDOM-NAS.sh
@@ -1,11 +1,11 @@
#!/bin/bash
# Random Search and Reproducibility for Neural Architecture Search, UAI 2019
-# bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 -1
+# bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 0 -1
echo script name: $0
echo $# arguments
-if [ "$#" -ne 2 ] ;then
+if [ "$#" -ne 3 ] ;then
echo "Input illegal number of parameters " $#
- echo "Need 2 parameters for dataset and seed"
+ echo "Need 3 parameters for dataset, BN-tracking-status, and seed"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
@@ -16,11 +16,12 @@ else
fi
dataset=$1
-seed=$2
+BN=$2
+seed=$3
channel=16
num_cells=5
max_nodes=4
-space=nas-bench-102
+space=nas-bench-201
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
data_path="$TORCH_HOME/cifar.python"
@@ -28,14 +29,14 @@ else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
-save_dir=./output/search-cell-${space}/RANDOM-NAS-${dataset}
+save_dir=./output/search-cell-${space}/RANDOM-NAS-${dataset}-BN${BN}
OMP_NUM_THREADS=4 python ./exps/algos/RANDOM-NAS.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} --data_path ${data_path} \
--search_space_name ${space} \
- --track_running_stats 1 \
- --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \
+ --track_running_stats ${BN} \
+ --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \
--config_path ./configs/nas-benchmark/algos/RANDOM.config \
--select_num 100 \
--workers 4 --print_freq 200 --rand_seed ${seed}
diff --git a/scripts-search/algos/REINFORCE.sh b/scripts-search/algos/REINFORCE.sh
index 3f32be0..0f48375 100644
--- a/scripts-search/algos/REINFORCE.sh
+++ b/scripts-search/algos/REINFORCE.sh
@@ -1,10 +1,10 @@
#!/bin/bash
-# bash ./scripts-search/algos/REINFORCE.sh -1
+# bash ./scripts-search/algos/REINFORCE.sh 0.001 -1
echo script name: $0
echo $# arguments
-if [ "$#" -ne 1 ] ;then
+if [ "$#" -ne 2 ] ;then
echo "Input illegal number of parameters " $#
- echo "Need 1 parameters for seed"
+ echo "Need 2 parameters for LR and seed"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
@@ -15,19 +15,20 @@ else
fi
dataset=cifar10
-seed=$1
+LR=$1
+seed=$2
channel=16
num_cells=5
max_nodes=4
-space=nas-bench-102
+space=nas-bench-201
-save_dir=./output/search-cell-${space}/REINFORCE-${dataset}
+save_dir=./output/search-cell-${space}/REINFORCE-${dataset}-${LR}
OMP_NUM_THREADS=4 python ./exps/algos/reinforce.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} \
--search_space_name ${space} \
- --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \
+ --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \
--time_budget 12000 \
- --learning_rate 0.001 --EMA_momentum 0.9 \
+ --learning_rate ${LR} --EMA_momentum 0.9 \
--workers 4 --print_freq 200 --rand_seed ${seed}
diff --git a/scripts-search/algos/Random.sh b/scripts-search/algos/Random.sh
index f5dc668..ca6438c 100644
--- a/scripts-search/algos/Random.sh
+++ b/scripts-search/algos/Random.sh
@@ -19,7 +19,7 @@ seed=$1
channel=16
num_cells=5
max_nodes=4
-space=nas-bench-102
+space=nas-bench-201
save_dir=./output/search-cell-${space}/RAND-${dataset}
@@ -27,7 +27,7 @@ OMP_NUM_THREADS=4 python ./exps/algos/RANDOM.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} \
--search_space_name ${space} \
- --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \
+ --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \
--time_budget 12000 \
--workers 4 --print_freq 200 --rand_seed ${seed}
# --random_num 100 \
diff --git a/scripts-search/algos/SETN.sh b/scripts-search/algos/SETN.sh
index 7e4e0fc..24e7728 100644
--- a/scripts-search/algos/SETN.sh
+++ b/scripts-search/algos/SETN.sh
@@ -1,11 +1,11 @@
#!/bin/bash
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019
-# bash ./scripts-search/scripts/algos/SETN.sh cifar10 -1
+# bash ./scripts-search/scripts/algos/SETN.sh cifar10 0 -1
echo script name: $0
echo $# arguments
-if [ "$#" -ne 2 ] ;then
+if [ "$#" -ne 3 ] ;then
echo "Input illegal number of parameters " $#
- echo "Need 2 parameters for dataset and seed"
+ echo "Need 3 parameters for dataset, BN-tracking-status, and seed"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
@@ -16,11 +16,12 @@ else
fi
dataset=$1
-seed=$2
+BN=$2
+seed=$3
channel=16
num_cells=5
max_nodes=4
-space=nas-bench-102
+space=nas-bench-201
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
data_path="$TORCH_HOME/cifar.python"
@@ -28,15 +29,15 @@ else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
-save_dir=./output/search-cell-${space}/SETN-${dataset}
+save_dir=./output/search-cell-${space}/SETN-${dataset}-BN${BN}
OMP_NUM_THREADS=4 python ./exps/algos/SETN.py \
--save_dir ${save_dir} --max_nodes ${max_nodes} --channel ${channel} --num_cells ${num_cells} \
--dataset ${dataset} --data_path ${data_path} \
--search_space_name ${space} \
- --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \
+ --arch_nas_dataset ${TORCH_HOME}/NAS-Bench-201-v1_0-e61699.pth \
--config_path configs/nas-benchmark/algos/SETN.config \
- --track_running_stats 1 \
+ --track_running_stats ${BN} \
--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \
--select_num 100 \
--workers 4 --print_freq 200 --rand_seed ${seed}
diff --git a/scripts/nas-infer-train.sh b/scripts/nas-infer-train.sh
index 823e765..65ef501 100644
--- a/scripts/nas-infer-train.sh
+++ b/scripts/nas-infer-train.sh
@@ -30,6 +30,7 @@ elif [ ${dataset} == 'imagenet-1k' ]; then
workers=28
cutout_length=-1
else
+ exit 1
echo 'Unknown dataset: '${dataset}
fi
diff --git a/scripts/tas-infer-train.sh b/scripts/tas-infer-train.sh
index 034e3d3..f6f6adc 100644
--- a/scripts/tas-infer-train.sh
+++ b/scripts/tas-infer-train.sh
@@ -22,30 +22,44 @@ batch=256
save_dir=./output/search-shape/TAS-INFER-${dataset}-${model}
+if [ ${dataset} == 'cifar10' ] || [ ${dataset} == 'cifar100' ]; then
+ xpath=$TORCH_HOME/cifar.python
+ opt_config=./configs/opts/CIFAR-E300-W5-L1-COS.config
+ workers=4
+elif [ ${dataset} == 'imagenet-1k' ]; then
+ xpath=$TORCH_HOME/ILSVRC2012
+ #opt_config=./configs/opts/ImageNet-E120-Cos-Smooth.config
+ opt_config=./configs/opts/RImageNet-E120-Cos-Soft.config
+ workers=28
+else
+ echo 'Unknown dataset: '${dataset}
+ exit 1
+fi
+
python --version
# normal training
xsave_dir=${save_dir}-NMT
OMP_NUM_THREADS=4 python ./exps/basic-main.py --dataset ${dataset} \
- --data_path $TORCH_HOME/cifar.python \
+ --data_path ${xpath} \
--model_config ./configs/NeurIPS-2019/${model}.config \
- --optim_config ./configs/opts/CIFAR-E300-W5-L1-COS.config \
+ --optim_config ${opt_config} \
--procedure basic \
--save_dir ${xsave_dir} \
--cutout_length -1 \
- --batch_size ${batch} --rand_seed ${rseed} --workers 6 \
+ --batch_size ${batch} --rand_seed ${rseed} --workers ${workers} \
--eval_frequency 1 --print_freq 100 --print_freq_eval 200
# KD training
xsave_dir=${save_dir}-KDT
OMP_NUM_THREADS=4 python ./exps/KD-main.py --dataset ${dataset} \
- --data_path $TORCH_HOME/cifar.python \
+ --data_path ${xpath} \
--model_config ./configs/NeurIPS-2019/${model}.config \
- --optim_config ./configs/opts/CIFAR-E300-W5-L1-COS.config \
+ --optim_config ${opt_config} \
--KD_checkpoint ./.latent-data/basemodels/${dataset}/${model}.pth \
--procedure Simple-KD \
--save_dir ${xsave_dir} \
--KD_alpha 0.9 --KD_temperature 4 \
--cutout_length -1 \
- --batch_size ${batch} --rand_seed ${rseed} --workers 6 \
+ --batch_size ${batch} --rand_seed ${rseed} --workers ${workers} \
--eval_frequency 1 --print_freq 100 --print_freq_eval 200