From bd407ac4dc4d1f4b4bb79370fe26da30ca54d29a Mon Sep 17 00:00:00 2001 From: D-X-Y <280835372@qq.com> Date: Wed, 19 May 2021 07:23:50 +0000 Subject: [PATCH] Refine lib -> xautodl --- docs/CVPR-2019-GDAS.md | 2 +- docs/ICCV-2019-SETN.md | 2 +- xautodl/utils/flop_benchmark.py | 4 ++-- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/CVPR-2019-GDAS.md b/docs/CVPR-2019-GDAS.md index 5d43889..0464434 100644 --- a/docs/CVPR-2019-GDAS.md +++ b/docs/CVPR-2019-GDAS.md @@ -1,6 +1,6 @@ # [Searching for A Robust Neural Architecture in Four GPU Hours](https://arxiv.org/abs/1910.04465) - + Searching for A Robust Neural Architecture in Four GPU Hours is accepted at CVPR 2019. In this paper, we proposed a Gradient-based searching algorithm using Differentiable Architecture Sampling (GDAS). diff --git a/docs/ICCV-2019-SETN.md b/docs/ICCV-2019-SETN.md index c818fd5..13c5fa1 100644 --- a/docs/ICCV-2019-SETN.md +++ b/docs/ICCV-2019-SETN.md @@ -1,6 +1,6 @@ # [One-Shot Neural Architecture Search via Self-Evaluated Template Network](https://arxiv.org/abs/1910.05733) - + Highlight: we equip one-shot NAS with an architecture sampler and train network weights using uniformly sampling. diff --git a/xautodl/utils/flop_benchmark.py b/xautodl/utils/flop_benchmark.py index 32dce0a..e9141f7 100644 --- a/xautodl/utils/flop_benchmark.py +++ b/xautodl/utils/flop_benchmark.py @@ -10,9 +10,9 @@ def count_parameters_in_MB(model): def count_parameters(model_or_parameters, unit="mb"): if isinstance(model_or_parameters, nn.Module): counts = sum(np.prod(v.size()) for v in model_or_parameters.parameters()) - elif isinstance(models_or_parameters, nn.Parameter): + elif isinstance(model_or_parameters, nn.Parameter): counts = models_or_parameters.numel() - elif isinstance(models_or_parameters, (list, tuple)): + elif isinstance(model_or_parameters, (list, tuple)): counts = sum(count_parameters(x, None) for x in models_or_parameters) else: counts = sum(np.prod(v.size()) for v in model_or_parameters)