Reformulate Q-Transformer
This commit is contained in:
		| @@ -14,10 +14,10 @@ from typing import Optional | ||||
| import logging | ||||
|  | ||||
| from qlib.utils import ( | ||||
|   unpack_archive_with_buffer, | ||||
|   save_multiple_parts_file, | ||||
|   create_save_path, | ||||
|   drop_nan_by_y_index, | ||||
|     unpack_archive_with_buffer, | ||||
|     save_multiple_parts_file, | ||||
|     create_save_path, | ||||
|     drop_nan_by_y_index, | ||||
| ) | ||||
| from qlib.log import get_module_logger, TimeInspector | ||||
|  | ||||
| @@ -25,6 +25,7 @@ import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| import torch.optim as optim | ||||
| import torch.utils.data as th_data | ||||
|  | ||||
| import layers as xlayers | ||||
| from utils import count_parameters | ||||
| @@ -34,409 +35,399 @@ from qlib.data.dataset import DatasetH | ||||
| from qlib.data.dataset.handler import DataHandlerLP | ||||
|  | ||||
|  | ||||
| default_net_config = dict(d_feat=6, hidden_size=48, depth=5, pos_drop=0.1) | ||||
|  | ||||
| default_opt_config = dict(epochs=200, lr=0.001, batch_size=2000, early_stop=20, loss="mse", optimizer="adam") | ||||
|  | ||||
|  | ||||
| class QuantTransformer(Model): | ||||
|   """Transformer-based Quant Model | ||||
|     """Transformer-based Quant Model""" | ||||
|  | ||||
|   """ | ||||
|     def __init__(self, net_config=None, opt_config=None, metric="", GPU=0, seed=None, **kwargs): | ||||
|         # Set logger. | ||||
|         self.logger = get_module_logger("QuantTransformer") | ||||
|         self.logger.info("QuantTransformer pytorch version...") | ||||
|  | ||||
|   def __init__( | ||||
|     self, | ||||
|     d_feat=6, | ||||
|     hidden_size=48, | ||||
|     depth=5, | ||||
|     pos_dropout=0.1, | ||||
|     n_epochs=200, | ||||
|     lr=0.001, | ||||
|     metric="", | ||||
|     batch_size=2000, | ||||
|     early_stop=20, | ||||
|     loss="mse", | ||||
|     optimizer="adam", | ||||
|     GPU=0, | ||||
|     seed=None, | ||||
|     **kwargs | ||||
|   ): | ||||
|     # Set logger. | ||||
|     self.logger = get_module_logger("QuantTransformer") | ||||
|     self.logger.info("QuantTransformer pytorch version...") | ||||
|         # set hyper-parameters. | ||||
|         self.net_config = net_config or default_net_config | ||||
|         self.opt_config = opt_config or default_opt_config | ||||
|         self.metric = metric | ||||
|         self.device = torch.device("cuda:{:}".format(GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu") | ||||
|         self.seed = seed | ||||
|  | ||||
|     # set hyper-parameters. | ||||
|     self.d_feat = d_feat | ||||
|     self.hidden_size = hidden_size | ||||
|     self.depth = depth | ||||
|     self.pos_dropout = pos_dropout | ||||
|     self.n_epochs = n_epochs | ||||
|     self.lr = lr | ||||
|     self.metric = metric | ||||
|     self.batch_size = batch_size | ||||
|     self.early_stop = early_stop | ||||
|     self.optimizer = optimizer.lower() | ||||
|     self.loss = loss | ||||
|     self.device = torch.device("cuda:{:}".format(GPU) if torch.cuda.is_available() else "cpu") | ||||
|     self.use_gpu = torch.cuda.is_available() | ||||
|     self.seed = seed | ||||
|         self.logger.info( | ||||
|             "Transformer parameters setting:" | ||||
|             "\nnet_config : {:}" | ||||
|             "\nopt_config : {:}" | ||||
|             "\nmetric     : {:}" | ||||
|             "\ndevice     : {:}" | ||||
|             "\nseed       : {:}".format( | ||||
|                 self.net_config, | ||||
|                 self.opt_config, | ||||
|                 self.metric, | ||||
|                 self.device, | ||||
|                 self.seed, | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|     self.logger.info( | ||||
|       "Transformer parameters setting:" | ||||
|       "\nd_feat : {}" | ||||
|       "\nhidden_size : {}" | ||||
|       "\ndepth : {}" | ||||
|       "\ndropout : {}" | ||||
|       "\nn_epochs : {}" | ||||
|       "\nlr : {}" | ||||
|       "\nmetric : {}" | ||||
|       "\nbatch_size : {}" | ||||
|       "\nearly_stop : {}" | ||||
|       "\noptimizer : {}" | ||||
|       "\nloss_type : {}" | ||||
|       "\nvisible_GPU : {}" | ||||
|       "\nuse_GPU : {}" | ||||
|       "\nseed : {}".format( | ||||
|         d_feat, | ||||
|         hidden_size, | ||||
|         depth, | ||||
|         pos_dropout, | ||||
|         n_epochs, | ||||
|         lr, | ||||
|         metric, | ||||
|         batch_size, | ||||
|         early_stop, | ||||
|         optimizer.lower(), | ||||
|         loss, | ||||
|         GPU, | ||||
|         self.use_gpu, | ||||
|         seed, | ||||
|       ) | ||||
|     ) | ||||
|         if self.seed is not None: | ||||
|             np.random.seed(self.seed) | ||||
|             torch.manual_seed(self.seed) | ||||
|  | ||||
|     if self.seed is not None: | ||||
|       np.random.seed(self.seed) | ||||
|       torch.manual_seed(self.seed) | ||||
|         self.model = TransformerModel( | ||||
|             d_feat=self.net_config["d_feat"], | ||||
|             embed_dim=self.net_config["hidden_size"], | ||||
|             depth=self.net_config["depth"], | ||||
|             pos_drop=self.net_config["pos_drop"], | ||||
|         ) | ||||
|         self.logger.info("model: {:}".format(self.model)) | ||||
|         self.logger.info("model size: {:.3f} MB".format(count_parameters(self.model))) | ||||
|  | ||||
|     self.model = TransformerModel(d_feat=self.d_feat, | ||||
|                                   embed_dim=self.hidden_size, | ||||
|                                   depth=self.depth, | ||||
|                                   pos_dropout=pos_dropout) | ||||
|     self.logger.info('model: {:}'.format(self.model)) | ||||
|     self.logger.info('model size: {:.3f} MB'.format(count_parameters(self.model))) | ||||
|    | ||||
|      | ||||
|     if optimizer.lower() == "adam": | ||||
|       self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.lr) | ||||
|     elif optimizer.lower() == "gd": | ||||
|       self.train_optimizer = optim.SGD(self.model.parameters(), lr=self.lr) | ||||
|     else: | ||||
|       raise NotImplementedError("optimizer {:} is not supported!".format(optimizer)) | ||||
|  | ||||
|     self.fitted = False | ||||
|     self.model.to(self.device) | ||||
|  | ||||
|   def loss_fn(self, pred, label): | ||||
|     mask = ~torch.isnan(label) | ||||
|     if self.loss == "mse": | ||||
|       return F.mse_loss(pred[mask], label[mask]) | ||||
|     else: | ||||
|       raise ValueError("unknown loss `{:}`".format(self.loss)) | ||||
|  | ||||
|   def metric_fn(self, pred, label): | ||||
|  | ||||
|     mask = torch.isfinite(label) | ||||
|  | ||||
|     if self.metric == "" or self.metric == "loss": | ||||
|       return -self.loss_fn(pred[mask], label[mask]) | ||||
|     else: | ||||
|       raise ValueError("unknown metric `{:}`".format(self.metric)) | ||||
|  | ||||
|   def train_epoch(self, x_train, y_train): | ||||
|  | ||||
|     x_train_values = x_train.values | ||||
|     y_train_values = np.squeeze(y_train.values) | ||||
|  | ||||
|     self.model.train() | ||||
|  | ||||
|     indices = np.arange(len(x_train_values)) | ||||
|     np.random.shuffle(indices) | ||||
|  | ||||
|     for i in range(len(indices))[:: self.batch_size]: | ||||
|  | ||||
|       if len(indices) - i < self.batch_size: | ||||
|         break | ||||
|  | ||||
|       feature = torch.from_numpy(x_train_values[indices[i : i + self.batch_size]]).float().to(self.device) | ||||
|       label = torch.from_numpy(y_train_values[indices[i : i + self.batch_size]]).float().to(self.device) | ||||
|  | ||||
|       pred = self.model(feature) | ||||
|       loss = self.loss_fn(pred, label) | ||||
|  | ||||
|       self.train_optimizer.zero_grad() | ||||
|       loss.backward() | ||||
|       torch.nn.utils.clip_grad_value_(self.model.parameters(), 3.0) | ||||
|       self.train_optimizer.step() | ||||
|  | ||||
|   def test_epoch(self, data_x, data_y): | ||||
|  | ||||
|     # prepare training data | ||||
|     x_values = data_x.values | ||||
|     y_values = np.squeeze(data_y.values) | ||||
|  | ||||
|     self.model.eval() | ||||
|  | ||||
|     scores = [] | ||||
|     losses = [] | ||||
|  | ||||
|     indices = np.arange(len(x_values)) | ||||
|  | ||||
|     for i in range(len(indices))[:: self.batch_size]: | ||||
|  | ||||
|       if len(indices) - i < self.batch_size: | ||||
|         break | ||||
|  | ||||
|       feature = torch.from_numpy(x_values[indices[i : i + self.batch_size]]).float().to(self.device) | ||||
|       label = torch.from_numpy(y_values[indices[i : i + self.batch_size]]).float().to(self.device) | ||||
|  | ||||
|       pred = self.model(feature) | ||||
|       loss = self.loss_fn(pred, label) | ||||
|       losses.append(loss.item()) | ||||
|  | ||||
|       score = self.metric_fn(pred, label) | ||||
|       scores.append(score.item()) | ||||
|  | ||||
|     return np.mean(losses), np.mean(scores) | ||||
|  | ||||
|   def fit( | ||||
|     self, | ||||
|     dataset: DatasetH, | ||||
|     evals_result=dict(), | ||||
|     verbose=True, | ||||
|     save_path=None, | ||||
|   ): | ||||
|  | ||||
|     df_train, df_valid, df_test = dataset.prepare( | ||||
|       ["train", "valid", "test"], | ||||
|       col_set=["feature", "label"], | ||||
|       data_key=DataHandlerLP.DK_L, | ||||
|     ) | ||||
|  | ||||
|     x_train, y_train = df_train["feature"], df_train["label"] | ||||
|     x_valid, y_valid = df_valid["feature"], df_valid["label"] | ||||
|  | ||||
|     if save_path == None: | ||||
|       save_path = create_save_path(save_path) | ||||
|     stop_steps = 0 | ||||
|     train_loss = 0 | ||||
|     best_score = -np.inf | ||||
|     best_epoch = 0 | ||||
|     evals_result["train"] = [] | ||||
|     evals_result["valid"] = [] | ||||
|  | ||||
|     # train | ||||
|     self.logger.info("training...") | ||||
|     self.fitted = True | ||||
|  | ||||
|     for step in range(self.n_epochs): | ||||
|       self.logger.info("Epoch%d:", step) | ||||
|       self.logger.info("training...") | ||||
|       self.train_epoch(x_train, y_train) | ||||
|       self.logger.info("evaluating...") | ||||
|       train_loss, train_score = self.test_epoch(x_train, y_train) | ||||
|       val_loss, val_score = self.test_epoch(x_valid, y_valid) | ||||
|       self.logger.info("train %.6f, valid %.6f" % (train_score, val_score)) | ||||
|       evals_result["train"].append(train_score) | ||||
|       evals_result["valid"].append(val_score) | ||||
|  | ||||
|       if val_score > best_score: | ||||
|         best_score = val_score | ||||
|         stop_steps = 0 | ||||
|         best_epoch = step | ||||
|         best_param = copy.deepcopy(self.model.state_dict()) | ||||
|       else: | ||||
|         stop_steps += 1 | ||||
|         if stop_steps >= self.early_stop: | ||||
|           self.logger.info("early stop") | ||||
|           break | ||||
|  | ||||
|     self.logger.info("best score: %.6lf @ %d" % (best_score, best_epoch)) | ||||
|     self.model.load_state_dict(best_param) | ||||
|     torch.save(best_param, save_path) | ||||
|  | ||||
|     if self.use_gpu: | ||||
|       torch.cuda.empty_cache() | ||||
|  | ||||
|   def predict(self, dataset): | ||||
|  | ||||
|     if not self.fitted: | ||||
|       raise ValueError("model is not fitted yet!") | ||||
|  | ||||
|     x_test = dataset.prepare("test", col_set="feature") | ||||
|     index = x_test.index | ||||
|     self.model.eval() | ||||
|     x_values = x_test.values | ||||
|     sample_num = x_values.shape[0] | ||||
|     preds = [] | ||||
|  | ||||
|     for begin in range(sample_num)[:: self.batch_size]: | ||||
|  | ||||
|       if sample_num - begin < self.batch_size: | ||||
|         end = sample_num | ||||
|       else: | ||||
|         end = begin + self.batch_size | ||||
|  | ||||
|       x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device) | ||||
|  | ||||
|       with torch.no_grad(): | ||||
|         if self.use_gpu: | ||||
|           pred = self.model(x_batch).detach().cpu().numpy() | ||||
|         if self.opt_config["optimizer"] == "adam": | ||||
|             self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.opt_config["lr"]) | ||||
|         elif self.opt_config["optimizer"] == "adam": | ||||
|             self.train_optimizer = optim.SGD(self.model.parameters(), lr=self.opt_config["lr"]) | ||||
|         else: | ||||
|           pred = self.model(x_batch).detach().numpy() | ||||
|             raise NotImplementedError("optimizer {:} is not supported!".format(optimizer)) | ||||
|  | ||||
|       preds.append(pred) | ||||
|         self.fitted = False | ||||
|         self.model.to(self.device) | ||||
|  | ||||
|     return pd.Series(np.concatenate(preds), index=index) | ||||
|     @property | ||||
|     def use_gpu(self): | ||||
|         self.device == torch.device("cpu") | ||||
|  | ||||
|     def loss_fn(self, pred, label): | ||||
|         mask = ~torch.isnan(label) | ||||
|         if self.opt_config["loss"] == "mse": | ||||
|             return F.mse_loss(pred[mask], label[mask]) | ||||
|         else: | ||||
|             raise ValueError("unknown loss `{:}`".format(self.loss)) | ||||
|  | ||||
|     def metric_fn(self, pred, label): | ||||
|         mask = torch.isfinite(label) | ||||
|         if self.metric == "" or self.metric == "loss": | ||||
|             return -self.loss_fn(pred[mask], label[mask]) | ||||
|         else: | ||||
|             raise ValueError("unknown metric `{:}`".format(self.metric)) | ||||
|  | ||||
|     def train_epoch(self, xloader, model, loss_fn, optimizer): | ||||
|         model.train() | ||||
|         scores, losses = [], [] | ||||
|         for ibatch, (feats, labels) in enumerate(xloader): | ||||
|             feats = feats.to(self.device, non_blocking=True) | ||||
|             labels = labels.to(self.device, non_blocking=True) | ||||
|             # forward the network | ||||
|             preds = model(feats) | ||||
|             loss = loss_fn(preds, labels) | ||||
|             with torch.no_grad(): | ||||
|                 score = self.metric_fn(preds, labels) | ||||
|                 losses.append(loss.item()) | ||||
|                 scores.append(loss.item()) | ||||
|             # optimize the network | ||||
|             optimizer.zero_grad() | ||||
|             loss.backward() | ||||
|             torch.nn.utils.clip_grad_value_(model.parameters(), 3.0) | ||||
|             optimizer.step() | ||||
|         return np.mean(losses), np.mean(scores) | ||||
|  | ||||
|     def test_epoch(self, xloader, model, loss_fn, metric_fn): | ||||
|         model.eval() | ||||
|         scores, losses = [], [] | ||||
|         with torch.no_grad(): | ||||
|             for ibatch, (feats, labels) in enumerate(xloader): | ||||
|                 feats = feats.to(self.device, non_blocking=True) | ||||
|                 labels = labels.to(self.device, non_blocking=True) | ||||
|                 # forward the network | ||||
|                 preds = model(feats) | ||||
|                 loss = loss_fn(preds, labels) | ||||
|                 score = self.metric_fn(preds, labels) | ||||
|                 losses.append(loss.item()) | ||||
|                 scores.append(loss.item()) | ||||
|         return np.mean(losses), np.mean(scores) | ||||
|  | ||||
|     def fit( | ||||
|         self, | ||||
|         dataset: DatasetH, | ||||
|         evals_result=dict(), | ||||
|         verbose=True, | ||||
|         save_path=None, | ||||
|     ): | ||||
|         def _prepare_dataset(df_data): | ||||
|             return th_data.TensorDataset( | ||||
|                 torch.from_numpy(df_data["feature"].values).float(), | ||||
|                 torch.from_numpy(df_data["label"].values).squeeze().float(), | ||||
|             ) | ||||
|  | ||||
|         df_train, df_valid, df_test = dataset.prepare( | ||||
|             ["train", "valid", "test"], | ||||
|             col_set=["feature", "label"], | ||||
|             data_key=DataHandlerLP.DK_L, | ||||
|         ) | ||||
|         train_dataset, valid_dataset, test_dataset = ( | ||||
|             _prepare_dataset(df_train), | ||||
|             _prepare_dataset(df_valid), | ||||
|             _prepare_dataset(df_test), | ||||
|         ) | ||||
|  | ||||
|         train_loader = th_data.DataLoader( | ||||
|             train_dataset, batch_size=self.opt_config["batch_size"], shuffle=True, drop_last=False, pin_memory=True | ||||
|         ) | ||||
|         valid_loader = th_data.DataLoader( | ||||
|             valid_dataset, batch_size=self.opt_config["batch_size"], shuffle=False, drop_last=False, pin_memory=True | ||||
|         ) | ||||
|         test_loader = th_data.DataLoader( | ||||
|             test_dataset, batch_size=self.opt_config["batch_size"], shuffle=False, drop_last=False, pin_memory=True | ||||
|         ) | ||||
|  | ||||
|         if save_path == None: | ||||
|             save_path = create_save_path(save_path) | ||||
|         stop_steps, best_score, best_epoch = 0, -np.inf, 0 | ||||
|         train_loss = 0 | ||||
|         evals_result["train"] = [] | ||||
|         evals_result["valid"] = [] | ||||
|  | ||||
|         # train | ||||
|         self.logger.info("Fit procedure for [{:}] with save path={:}".format(self.__class__.__name__, save_path)) | ||||
|  | ||||
|         def _internal_test(): | ||||
|             train_loss, train_score = self.test_epoch(train_loader, self.model, self.loss_fn, self.metric_fn) | ||||
|             valid_loss, valid_score = self.test_epoch(valid_loader, self.model, self.loss_fn, self.metric_fn) | ||||
|             test_loss, test_score = self.test_epoch(test_loader, self.model, self.loss_fn, self.metric_fn) | ||||
|             xstr = "train-score={:.6f}, valid-score={:.6f}, test-score={:.6f}".format( | ||||
|                 train_score, valid_score, test_score | ||||
|             ) | ||||
|             return dict(train=train_score, valid=valid_score, test=test_score), xstr | ||||
|  | ||||
|         _, eval_str = _internal_test() | ||||
|         self.logger.info("Before Training: {:}".format(eval_str)) | ||||
|         for iepoch in range(self.opt_config["epochs"]): | ||||
|             self.logger.info("Epoch={:03d}/{:03d} ::==>>".format(iepoch, self.opt_config["epochs"])) | ||||
|  | ||||
|             train_loss, train_score = self.train_epoch(train_loader, self.model, self.loss_fn, self.train_optimizer) | ||||
|             self.logger.info("Training :: loss={:.6f}, score={:.6f}".format(train_loss, train_score)) | ||||
|  | ||||
|             eval_score_dict, eval_str = _internal_test() | ||||
|             self.logger.info("Evaluating :: {:}".format(eval_str)) | ||||
|             evals_result["train"].append(eval_score_dict["train"]) | ||||
|             evals_result["valid"].append(eval_score_dict["valid"]) | ||||
|  | ||||
|             if eval_score_dict["valid"] > best_score: | ||||
|                 stop_steps, best_epoch, best_score = 0, iepoch, eval_score_dict["valid"] | ||||
|                 best_param = copy.deepcopy(self.model.state_dict()) | ||||
|             else: | ||||
|                 stop_steps += 1 | ||||
|                 if stop_steps >= self.opt_config["early_stop"]: | ||||
|                     self.logger.info("early stop at {:}-th epoch, where the best is @{:}".format(iepoch, best_epoch)) | ||||
|                     break | ||||
|  | ||||
|         self.logger.info("The best score: {:.6f} @ {:02d}-th epoch".format(best_score, best_epoch)) | ||||
|         self.model.load_state_dict(best_param) | ||||
|         torch.save(best_param, save_path) | ||||
|  | ||||
|         if self.use_gpu: | ||||
|             torch.cuda.empty_cache() | ||||
|         self.fitted = True | ||||
|  | ||||
|     def predict(self, dataset): | ||||
|  | ||||
|         if not self.fitted: | ||||
|             raise ValueError("model is not fitted yet!") | ||||
|  | ||||
|         x_test = dataset.prepare("test", col_set="feature") | ||||
|         index = x_test.index | ||||
|         self.model.eval() | ||||
|         x_values = x_test.values | ||||
|         sample_num = x_values.shape[0] | ||||
|         preds = [] | ||||
|  | ||||
|         for begin in range(sample_num)[:: self.batch_size]: | ||||
|  | ||||
|             if sample_num - begin < self.batch_size: | ||||
|                 end = sample_num | ||||
|             else: | ||||
|                 end = begin + self.batch_size | ||||
|  | ||||
|             x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device) | ||||
|  | ||||
|             with torch.no_grad(): | ||||
|                 if self.use_gpu: | ||||
|                     pred = self.model(x_batch).detach().cpu().numpy() | ||||
|                 else: | ||||
|                     pred = self.model(x_batch).detach().numpy() | ||||
|  | ||||
|             preds.append(pred) | ||||
|  | ||||
|         return pd.Series(np.concatenate(preds), index=index) | ||||
|  | ||||
|  | ||||
| # Real Model | ||||
|  | ||||
|  | ||||
| class Attention(nn.Module): | ||||
|     def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): | ||||
|         super(Attention, self).__init__() | ||||
|         self.num_heads = num_heads | ||||
|         head_dim = dim // num_heads | ||||
|         # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | ||||
|         self.scale = qk_scale or math.sqrt(head_dim) | ||||
|  | ||||
|   def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | ||||
|     super(Attention, self).__init__() | ||||
|     self.num_heads = num_heads | ||||
|     head_dim = dim // num_heads | ||||
|     # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | ||||
|     self.scale = qk_scale or math.sqrt(head_dim) | ||||
|         self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | ||||
|         self.attn_drop = nn.Dropout(attn_drop) | ||||
|         self.proj = nn.Linear(dim, dim) | ||||
|         self.proj_drop = nn.Dropout(proj_drop) | ||||
|  | ||||
|     self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | ||||
|     self.attn_drop = nn.Dropout(attn_drop) | ||||
|     self.proj = nn.Linear(dim, dim) | ||||
|     self.proj_drop = nn.Dropout(proj_drop) | ||||
|     def forward(self, x): | ||||
|         B, N, C = x.shape | ||||
|         qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | ||||
|         q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     B, N, C = x.shape | ||||
|     qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | ||||
|     q, k, v = qkv[0], qkv[1], qkv[2]   # make torchscript happy (cannot use tensor as tuple) | ||||
|         attn = (q @ k.transpose(-2, -1)) * self.scale | ||||
|         attn = attn.softmax(dim=-1) | ||||
|         attn = self.attn_drop(attn) | ||||
|  | ||||
|     attn = (q @ k.transpose(-2, -1)) * self.scale | ||||
|     attn = attn.softmax(dim=-1) | ||||
|     attn = self.attn_drop(attn) | ||||
|  | ||||
|     x = (attn @ v).transpose(1, 2).reshape(B, N, C) | ||||
|     x = self.proj(x) | ||||
|     x = self.proj_drop(x) | ||||
|     return x | ||||
|         x = (attn @ v).transpose(1, 2).reshape(B, N, C) | ||||
|         x = self.proj(x) | ||||
|         x = self.proj_drop(x) | ||||
|         return x | ||||
|  | ||||
|  | ||||
| class Block(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         dim, | ||||
|         num_heads, | ||||
|         mlp_ratio=4.0, | ||||
|         qkv_bias=False, | ||||
|         qk_scale=None, | ||||
|         attn_drop=0.0, | ||||
|         mlp_drop=0.0, | ||||
|         drop_path=0.0, | ||||
|         act_layer=nn.GELU, | ||||
|         norm_layer=nn.LayerNorm, | ||||
|     ): | ||||
|         super(Block, self).__init__() | ||||
|         self.norm1 = norm_layer(dim) | ||||
|         self.attn = Attention( | ||||
|             dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=mlp_drop | ||||
|         ) | ||||
|         # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | ||||
|         self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | ||||
|         self.norm2 = norm_layer(dim) | ||||
|         mlp_hidden_dim = int(dim * mlp_ratio) | ||||
|         self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=mlp_drop) | ||||
|  | ||||
|   def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, | ||||
|                attn_drop=0., mlp_drop=0., drop_path=0., | ||||
|                act_layer=nn.GELU, norm_layer=nn.LayerNorm): | ||||
|     super(Block, self).__init__() | ||||
|     self.norm1 = norm_layer(dim) | ||||
|     self.attn = Attention( | ||||
|       dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=mlp_drop) | ||||
|     # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | ||||
|     self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0. else nn.Identity() | ||||
|     self.norm2 = norm_layer(dim) | ||||
|     mlp_hidden_dim = int(dim * mlp_ratio) | ||||
|     self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=mlp_drop) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = x + self.drop_path(self.attn(self.norm1(x))) | ||||
|     x = x + self.drop_path(self.mlp(self.norm2(x))) | ||||
|     return x | ||||
|     def forward(self, x): | ||||
|         x = x + self.drop_path(self.attn(self.norm1(x))) | ||||
|         x = x + self.drop_path(self.mlp(self.norm2(x))) | ||||
|         return x | ||||
|  | ||||
|  | ||||
| class SimpleEmbed(nn.Module): | ||||
|     def __init__(self, d_feat, embed_dim): | ||||
|         super(SimpleEmbed, self).__init__() | ||||
|         self.d_feat = d_feat | ||||
|         self.embed_dim = embed_dim | ||||
|         self.proj = nn.Linear(d_feat, embed_dim) | ||||
|  | ||||
|   def __init__(self, d_feat, embed_dim): | ||||
|     super(SimpleEmbed, self).__init__() | ||||
|     self.d_feat = d_feat | ||||
|     self.embed_dim = embed_dim | ||||
|     self.proj = nn.Linear(d_feat, embed_dim) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = x.reshape(len(x), self.d_feat, -1)  # [N, F*T] -> [N, F, T] | ||||
|     x = x.permute(0, 2, 1)                  # [N, F, T] -> [N, T, F] | ||||
|     out = self.proj(x) * math.sqrt(self.embed_dim) | ||||
|     return out | ||||
|     def forward(self, x): | ||||
|         x = x.reshape(len(x), self.d_feat, -1)  # [N, F*T] -> [N, F, T] | ||||
|         x = x.permute(0, 2, 1)  # [N, F, T] -> [N, T, F] | ||||
|         out = self.proj(x) * math.sqrt(self.embed_dim) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| class TransformerModel(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         d_feat: int, | ||||
|         embed_dim: int = 64, | ||||
|         depth: int = 4, | ||||
|         num_heads: int = 4, | ||||
|         mlp_ratio: float = 4.0, | ||||
|         qkv_bias: bool = True, | ||||
|         qk_scale: Optional[float] = None, | ||||
|         pos_drop=0.0, | ||||
|         mlp_drop_rate=0.0, | ||||
|         attn_drop_rate=0.0, | ||||
|         drop_path_rate=0.0, | ||||
|         norm_layer=None, | ||||
|     ): | ||||
|         """ | ||||
|         Args: | ||||
|           d_feat (int, tuple): input image size | ||||
|           embed_dim (int): embedding dimension | ||||
|           depth (int): depth of transformer | ||||
|           num_heads (int): number of attention heads | ||||
|           mlp_ratio (int): ratio of mlp hidden dim to embedding dim | ||||
|           qkv_bias (bool): enable bias for qkv if True | ||||
|           qk_scale (float): override default qk scale of head_dim ** -0.5 if set | ||||
|           pos_drop (float): dropout rate for the positional embedding | ||||
|           mlp_drop_rate (float): the dropout rate for MLP layers in a block | ||||
|           attn_drop_rate (float): attention dropout rate | ||||
|           drop_path_rate (float): stochastic depth rate | ||||
|           norm_layer: (nn.Module): normalization layer | ||||
|         """ | ||||
|         super(TransformerModel, self).__init__() | ||||
|         self.embed_dim = embed_dim | ||||
|         self.num_features = embed_dim | ||||
|         norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | ||||
|  | ||||
|   def __init__(self, | ||||
|          d_feat: int, | ||||
|          embed_dim: int = 64, | ||||
|          depth: int = 4, | ||||
|          num_heads: int = 4, | ||||
|          mlp_ratio: float = 4., | ||||
|          qkv_bias: bool = True, | ||||
|          qk_scale: Optional[float] = None, | ||||
|          pos_dropout=0., mlp_drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None): | ||||
|     """ | ||||
|     Args: | ||||
|       d_feat (int, tuple): input image size | ||||
|       embed_dim (int): embedding dimension | ||||
|       depth (int): depth of transformer | ||||
|       num_heads (int): number of attention heads | ||||
|       mlp_ratio (int): ratio of mlp hidden dim to embedding dim | ||||
|       qkv_bias (bool): enable bias for qkv if True | ||||
|       qk_scale (float): override default qk scale of head_dim ** -0.5 if set | ||||
|       pos_dropout (float): dropout rate for the positional embedding | ||||
|       mlp_drop_rate (float): the dropout rate for MLP layers in a block | ||||
|       attn_drop_rate (float): attention dropout rate | ||||
|       drop_path_rate (float): stochastic depth rate | ||||
|       norm_layer: (nn.Module): normalization layer | ||||
|     """ | ||||
|     super(TransformerModel, self).__init__() | ||||
|     self.embed_dim = embed_dim | ||||
|     self.num_features = embed_dim | ||||
|     norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | ||||
|         self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim) | ||||
|  | ||||
|     self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim) | ||||
|         self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | ||||
|         self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65, dropout=pos_drop) | ||||
|  | ||||
|     self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | ||||
|     self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65, dropout=pos_dropout) | ||||
|         dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule | ||||
|         self.blocks = nn.ModuleList( | ||||
|             [ | ||||
|                 Block( | ||||
|                     dim=embed_dim, | ||||
|                     num_heads=num_heads, | ||||
|                     mlp_ratio=mlp_ratio, | ||||
|                     qkv_bias=qkv_bias, | ||||
|                     qk_scale=qk_scale, | ||||
|                     attn_drop=attn_drop_rate, | ||||
|                     mlp_drop=mlp_drop_rate, | ||||
|                     drop_path=dpr[i], | ||||
|                     norm_layer=norm_layer, | ||||
|                 ) | ||||
|                 for i in range(depth) | ||||
|             ] | ||||
|         ) | ||||
|         self.norm = norm_layer(embed_dim) | ||||
|  | ||||
|     dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule | ||||
|     self.blocks = nn.ModuleList([ | ||||
|       Block( | ||||
|         dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | ||||
|         attn_drop=attn_drop_rate, mlp_drop=mlp_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) | ||||
|       for i in range(depth)]) | ||||
|     self.norm = norm_layer(embed_dim) | ||||
|         # regression head | ||||
|         self.head = nn.Linear(self.num_features, 1) | ||||
|  | ||||
|     # regression head | ||||
|     self.head = nn.Linear(self.num_features, 1) | ||||
|         xlayers.trunc_normal_(self.cls_token, std=0.02) | ||||
|         self.apply(self._init_weights) | ||||
|  | ||||
|     xlayers.trunc_normal_(self.cls_token, std=.02) | ||||
|     self.apply(self._init_weights) | ||||
|     def _init_weights(self, m): | ||||
|         if isinstance(m, nn.Linear): | ||||
|             xlayers.trunc_normal_(m.weight, std=0.02) | ||||
|             if isinstance(m, nn.Linear) and m.bias is not None: | ||||
|                 nn.init.constant_(m.bias, 0) | ||||
|         elif isinstance(m, nn.LayerNorm): | ||||
|             nn.init.constant_(m.bias, 0) | ||||
|             nn.init.constant_(m.weight, 1.0) | ||||
|  | ||||
|   def _init_weights(self, m): | ||||
|     if isinstance(m, nn.Linear): | ||||
|       xlayers.trunc_normal_(m.weight, std=.02) | ||||
|       if isinstance(m, nn.Linear) and m.bias is not None: | ||||
|         nn.init.constant_(m.bias, 0) | ||||
|     elif isinstance(m, nn.LayerNorm): | ||||
|       nn.init.constant_(m.bias, 0) | ||||
|       nn.init.constant_(m.weight, 1.0) | ||||
|     def forward_features(self, x): | ||||
|         batch, flatten_size = x.shape | ||||
|         feats = self.input_embed(x)  # batch * 60 * 64 | ||||
|  | ||||
|   def forward_features(self, x): | ||||
|     batch, flatten_size = x.shape | ||||
|     feats = self.input_embed(x)  # batch * 60 * 64 | ||||
|         cls_tokens = self.cls_token.expand(batch, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks | ||||
|         feats_w_ct = torch.cat((cls_tokens, feats), dim=1) | ||||
|         feats_w_tp = self.pos_embed(feats_w_ct) | ||||
|  | ||||
|     cls_tokens = self.cls_token.expand(batch, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks | ||||
|     feats_w_ct = torch.cat((cls_tokens, feats), dim=1) | ||||
|     feats_w_tp = self.pos_embed(feats_w_ct) | ||||
|         xfeats = feats_w_tp | ||||
|         for block in self.blocks: | ||||
|             xfeats = block(xfeats) | ||||
|  | ||||
|     xfeats = feats_w_tp | ||||
|     for block in self.blocks: | ||||
|       xfeats = block(xfeats) | ||||
|         xfeats = self.norm(xfeats)[:, 0] | ||||
|         return xfeats | ||||
|  | ||||
|     xfeats = self.norm(xfeats)[:, 0] | ||||
|     return xfeats | ||||
|  | ||||
|   def forward(self, x): | ||||
|     feats = self.forward_features(x) | ||||
|     predicts = self.head(feats).squeeze(-1) | ||||
|     return predicts | ||||
|     def forward(self, x): | ||||
|         feats = self.forward_features(x) | ||||
|         predicts = self.head(feats).squeeze(-1) | ||||
|         return predicts | ||||
|   | ||||
		Reference in New Issue
	
	Block a user