From c2ba1bae57ff028051d1c14faeda966cd3c5b0de Mon Sep 17 00:00:00 2001 From: D-X-Y <280835372@qq.com> Date: Sat, 28 Sep 2019 19:58:19 +1000 Subject: [PATCH] update README --- README.md | 14 ++++++++------ 1 file changed, 8 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index e55d244..9667444 100644 --- a/README.md +++ b/README.md @@ -17,7 +17,6 @@ Some methods use knowledge distillation (KD), which require pre-trained models. ## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717) - Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`. @@ -43,6 +42,7 @@ args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel n ## One-Shot Neural Architecture Search via Self-Evaluated Template Network + Train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. ``` CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10 SETN 96 -1 @@ -55,6 +55,8 @@ Searching codes come soon! ## [Searching for A Robust Neural Architecture in Four GPU Hours](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.pdf) + + The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/GDAS) and a paddlepaddle implementation is locate at [`others/paddlepaddle`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/paddlepaddle). Train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. @@ -83,10 +85,10 @@ If you find that this project helps your research, please consider citing some o year = {2019} } @inproceedings{dong2019search, - title={Searching for A Robust Neural Architecture in Four GPU Hours}, - author={Dong, Xuanyi and Yang, Yi}, - booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, - pages={1761--1770}, - year={2019} + title = {Searching for A Robust Neural Architecture in Four GPU Hours}, + author = {Dong, Xuanyi and Yang, Yi}, + booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, + pages = {1761--1770}, + year = {2019} } ```