From c2ba1bae57ff028051d1c14faeda966cd3c5b0de Mon Sep 17 00:00:00 2001
From: D-X-Y <280835372@qq.com>
Date: Sat, 28 Sep 2019 19:58:19 +1000
Subject: [PATCH] update README
---
README.md | 14 ++++++++------
1 file changed, 8 insertions(+), 6 deletions(-)
diff --git a/README.md b/README.md
index e55d244..9667444 100644
--- a/README.md
+++ b/README.md
@@ -17,7 +17,6 @@ Some methods use knowledge distillation (KD), which require pre-trained models.
## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717)
-
Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`.
@@ -43,6 +42,7 @@ args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel n
## One-Shot Neural Architecture Search via Self-Evaluated Template Network
+
Train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet.
```
CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10 SETN 96 -1
@@ -55,6 +55,8 @@ Searching codes come soon!
## [Searching for A Robust Neural Architecture in Four GPU Hours](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.pdf)
+
+
The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/GDAS) and a paddlepaddle implementation is locate at [`others/paddlepaddle`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/paddlepaddle).
Train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet.
@@ -83,10 +85,10 @@ If you find that this project helps your research, please consider citing some o
year = {2019}
}
@inproceedings{dong2019search,
- title={Searching for A Robust Neural Architecture in Four GPU Hours},
- author={Dong, Xuanyi and Yang, Yi},
- booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
- pages={1761--1770},
- year={2019}
+ title = {Searching for A Robust Neural Architecture in Four GPU Hours},
+ author = {Dong, Xuanyi and Yang, Yi},
+ booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
+ pages = {1761--1770},
+ year = {2019}
}
```