diff --git a/README.md b/README.md index b66dfd1..ab72f57 100644 --- a/README.md +++ b/README.md @@ -110,6 +110,7 @@ If you find that this project helps your research, please consider citing some o title = {Network Pruning via Transformable Architecture Search}, author = {Dong, Xuanyi and Yang, Yi}, booktitle = {Neural Information Processing Systems (NeurIPS)}, + pages = {760--771}, year = {2019} } @inproceedings{dong2019one, diff --git a/README_CN.md b/README_CN.md index f517d0e..d09f57d 100644 --- a/README_CN.md +++ b/README_CN.md @@ -64,8 +64,7 @@ NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size NATS-Bench.md - - + ... ENAS / REA / REINFORCE / BOHB Please check the original papers. @@ -111,6 +110,7 @@ Some methods use knowledge distillation (KD), which require pre-trained models. author = {Dong, Xuanyi and Yang, Yi}, booktitle = {Neural Information Processing Systems (NeurIPS)}, year = {2019} + pages = {760--771}, } @inproceedings{dong2019one, title = {One-Shot Neural Architecture Search via Self-Evaluated Template Network}, diff --git a/docs/NATS-Bench.md b/docs/NATS-Bench.md index 0df2b1a..d3ade19 100644 --- a/docs/NATS-Bench.md +++ b/docs/NATS-Bench.md @@ -16,11 +16,17 @@ This facilitates a much larger community of researchers to focus on developing b ## The Procedure of Creating NATS-Bench -1, train all architecture candidate in the size search space with 90 epochs and use the random seed of `777`. +### The Size Search Space + +The following command will train all architecture candidate in the size search space with 90 epochs and use the random seed of `777`. If you want to use a different number of training epochs, please replace `90` with it, such as `01` or `12`. If you want to use a different ``` bash ./scripts/NATS-Bench/train-shapes.sh 00000-32767 90 777 ``` -The checkpoint of all candidates are located at `output/NATS-Bench-size` by default +The checkpoint of all candidates are located at `output/NATS-Bench-size` by default. + + +### The Topology Search Space + diff --git a/exps/NATS-Bench/main-sss.py b/exps/NATS-Bench/main-sss.py index 78c32d1..70fdbb9 100644 --- a/exps/NATS-Bench/main-sss.py +++ b/exps/NATS-Bench/main-sss.py @@ -3,6 +3,16 @@ ############################################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07 # ############################################################################## +# This file is used to train (all) architecture candidate in the size search # +# space in NATS-Bench (sss) with different hyper-parameters. # +# When use mode=new, it will automatically detect whether the checkpoint of # +# a trial exists, if so, it will skip this trial. When use mode=cover, it # +# will ignore the (possible) existing checkpoint, run each trial, and save. # +# (NOTE): the topology for all candidates in sss is fixed as: ###################### +# |nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2| # +################################################################################################### +# Please use the script of scripts/NATS-Bench/train-shapes.sh to run. # +############################################################################## import os, sys, time, torch, argparse from typing import List, Text, Dict, Any from PIL import ImageFile diff --git a/exps/NATS-Bench/main-tss.py b/exps/NATS-Bench/main-tss.py new file mode 100644 index 0000000..24dfac7 --- /dev/null +++ b/exps/NATS-Bench/main-tss.py @@ -0,0 +1,323 @@ +############################################################################## +# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # +############################################################################## +# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07 # +############################################################################## +# This file is used to train (all) architecture candidate in the topology # +# search space in NATS-Bench (tss) with different hyper-parameters. # +# When use mode=meta, +### +############################################################################## +# 1, generate meta data: # +# python ./exps/NATS-Bench/main-tss.py --mode meta # +############################################################################## +import os, sys, time, torch, random, argparse +from PIL import ImageFile +ImageFile.LOAD_TRUNCATED_IMAGES = True +from copy import deepcopy +from pathlib import Path + +lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() +if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) +from config_utils import load_config +from procedures import bench_evaluate_for_seed +from procedures import get_machine_info +from datasets import get_datasets +from log_utils import Logger, AverageMeter, time_string, convert_secs2time +from models import CellStructure, CellArchitectures, get_search_spaces + + +def evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger): + machine_info, arch_config = get_machine_info(), deepcopy(arch_config) + all_infos = {'info': machine_info} + all_dataset_keys = [] + # look all the datasets + for dataset, xpath, split in zip(datasets, xpaths, splits): + # train valid data + train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) + # load the configuration + if dataset == 'cifar10' or dataset == 'cifar100': + if use_less: config_path = 'configs/nas-benchmark/LESS.config' + else : config_path = 'configs/nas-benchmark/CIFAR.config' + split_info = load_config('configs/nas-benchmark/cifar-split.txt', None, None) + elif dataset.startswith('ImageNet16'): + if use_less: config_path = 'configs/nas-benchmark/LESS.config' + else : config_path = 'configs/nas-benchmark/ImageNet-16.config' + split_info = load_config('configs/nas-benchmark/{:}-split.txt'.format(dataset), None, None) + else: + raise ValueError('invalid dataset : {:}'.format(dataset)) + config = load_config(config_path, \ + {'class_num': class_num, + 'xshape' : xshape}, \ + logger) + # check whether use splited validation set + if bool(split): + assert dataset == 'cifar10' + ValLoaders = {'ori-test': torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True)} + assert len(train_data) == len(split_info.train) + len(split_info.valid), 'invalid length : {:} vs {:} + {:}'.format(len(train_data), len(split_info.train), len(split_info.valid)) + train_data_v2 = deepcopy(train_data) + train_data_v2.transform = valid_data.transform + valid_data = train_data_v2 + # data loader + train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), num_workers=workers, pin_memory=True) + valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), num_workers=workers, pin_memory=True) + ValLoaders['x-valid'] = valid_loader + else: + # data loader + train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) + valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) + if dataset == 'cifar10': + ValLoaders = {'ori-test': valid_loader} + elif dataset == 'cifar100': + cifar100_splits = load_config('configs/nas-benchmark/cifar100-test-split.txt', None, None) + ValLoaders = {'ori-test': valid_loader, + 'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True), + 'x-test' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest ), num_workers=workers, pin_memory=True) + } + elif dataset == 'ImageNet16-120': + imagenet16_splits = load_config('configs/nas-benchmark/imagenet-16-120-test-split.txt', None, None) + ValLoaders = {'ori-test': valid_loader, + 'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xvalid), num_workers=workers, pin_memory=True), + 'x-test' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xtest ), num_workers=workers, pin_memory=True) + } + else: + raise ValueError('invalid dataset : {:}'.format(dataset)) + + dataset_key = '{:}'.format(dataset) + if bool(split): dataset_key = dataset_key + '-valid' + logger.log('Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size)) + logger.log('Evaluate ||||||| {:10s} ||||||| Config={:}'.format(dataset_key, config)) + for key, value in ValLoaders.items(): + logger.log('Evaluate ---->>>> {:10s} with {:} batchs'.format(key, len(value))) + results = bench_evaluate_for_seed(arch_config, config, train_loader, ValLoaders, seed, logger) + all_infos[dataset_key] = results + all_dataset_keys.append( dataset_key ) + all_infos['all_dataset_keys'] = all_dataset_keys + return all_infos + + +def main(save_dir, workers, datasets, xpaths, splits, use_less, srange, arch_index, seeds, cover_mode, meta_info, arch_config): + assert torch.cuda.is_available(), 'CUDA is not available.' + torch.backends.cudnn.enabled = True + #torch.backends.cudnn.benchmark = True + torch.backends.cudnn.deterministic = True + torch.set_num_threads( workers ) + + assert len(srange) == 2 and 0 <= srange[0] <= srange[1], 'invalid srange : {:}'.format(srange) + + if use_less: + sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}-LESS'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells']) + else: + sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells']) + logger = Logger(str(sub_dir), 0, False) + + all_archs = meta_info['archs'] + assert srange[1] < meta_info['total'], 'invalid range : {:}-{:} vs. {:}'.format(srange[0], srange[1], meta_info['total']) + assert arch_index == -1 or srange[0] <= arch_index <= srange[1], 'invalid range : {:} vs. {:} vs. {:}'.format(srange[0], arch_index, srange[1]) + if arch_index == -1: + to_evaluate_indexes = list(range(srange[0], srange[1]+1)) + else: + to_evaluate_indexes = [arch_index] + logger.log('xargs : seeds = {:}'.format(seeds)) + logger.log('xargs : arch_index = {:}'.format(arch_index)) + logger.log('xargs : cover_mode = {:}'.format(cover_mode)) + logger.log('-'*100) + + logger.log('Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}'.format(srange[0], arch_index, srange[1], meta_info['total'], cover_mode)) + for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): + logger.log('--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}'.format(i, len(datasets), dataset, xpath, split)) + logger.log('--->>> architecture config : {:}'.format(arch_config)) + + + start_time, epoch_time = time.time(), AverageMeter() + for i, index in enumerate(to_evaluate_indexes): + arch = all_archs[index] + logger.log('\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seeds, '-'*15)) + #logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15)) + logger.log('{:} {:} {:}'.format('-'*15, arch, '-'*15)) + + # test this arch on different datasets with different seeds + has_continue = False + for seed in seeds: + to_save_name = sub_dir / 'arch-{:06d}-seed-{:04d}.pth'.format(index, seed) + if to_save_name.exists(): + if cover_mode: + logger.log('Find existing file : {:}, remove it before evaluation'.format(to_save_name)) + os.remove(str(to_save_name)) + else : + logger.log('Find existing file : {:}, skip this evaluation'.format(to_save_name)) + has_continue = True + continue + results = evaluate_all_datasets(CellStructure.str2structure(arch), \ + datasets, xpaths, splits, use_less, seed, \ + arch_config, workers, logger) + torch.save(results, to_save_name) + logger.log('{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seed, to_save_name)) + # measure elapsed time + if not has_continue: epoch_time.update(time.time() - start_time) + start_time = time.time() + need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes)-i-1), True) ) + logger.log('This arch costs : {:}'.format( convert_secs2time(epoch_time.val, True) )) + logger.log('{:}'.format('*'*100)) + logger.log('{:} {:74s} {:}'.format('*'*10, '{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}'.format(i, len(to_evaluate_indexes), index, meta_info['total'], need_time), '*'*10)) + logger.log('{:}'.format('*'*100)) + + logger.close() + + +def train_single_model(save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config): + assert torch.cuda.is_available(), 'CUDA is not available.' + torch.backends.cudnn.enabled = True + torch.backends.cudnn.deterministic = True + #torch.backends.cudnn.benchmark = True + torch.set_num_threads( workers ) + + save_dir = Path(save_dir) / 'specifics' / '{:}-{:}-{:}-{:}'.format('LESS' if use_less else 'FULL', model_str, arch_config['channel'], arch_config['num_cells']) + logger = Logger(str(save_dir), 0, False) + if model_str in CellArchitectures: + arch = CellArchitectures[model_str] + logger.log('The model string is found in pre-defined architecture dict : {:}'.format(model_str)) + else: + try: + arch = CellStructure.str2structure(model_str) + except: + raise ValueError('Invalid model string : {:}. It can not be found or parsed.'.format(model_str)) + assert arch.check_valid_op(get_search_spaces('cell', 'full')), '{:} has the invalid op.'.format(arch) + logger.log('Start train-evaluate {:}'.format(arch.tostr())) + logger.log('arch_config : {:}'.format(arch_config)) + + start_time, seed_time = time.time(), AverageMeter() + for _is, seed in enumerate(seeds): + logger.log('\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------'.format(_is, len(seeds), seed)) + to_save_name = save_dir / 'seed-{:04d}.pth'.format(seed) + if to_save_name.exists(): + logger.log('Find the existing file {:}, directly load!'.format(to_save_name)) + checkpoint = torch.load(to_save_name) + else: + logger.log('Does not find the existing file {:}, train and evaluate!'.format(to_save_name)) + checkpoint = evaluate_all_datasets(arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger) + torch.save(checkpoint, to_save_name) + # log information + logger.log('{:}'.format(checkpoint['info'])) + all_dataset_keys = checkpoint['all_dataset_keys'] + for dataset_key in all_dataset_keys: + logger.log('\n{:} dataset : {:} {:}'.format('-'*15, dataset_key, '-'*15)) + dataset_info = checkpoint[dataset_key] + #logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] )) + logger.log('Flops = {:} MB, Params = {:} MB'.format(dataset_info['flop'], dataset_info['param'])) + logger.log('config : {:}'.format(dataset_info['config'])) + logger.log('Training State (finish) = {:}'.format(dataset_info['finish-train'])) + last_epoch = dataset_info['total_epoch'] - 1 + train_acc1es, train_acc5es = dataset_info['train_acc1es'], dataset_info['train_acc5es'] + valid_acc1es, valid_acc5es = dataset_info['valid_acc1es'], dataset_info['valid_acc5es'] + logger.log('Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%'.format(train_acc1es[last_epoch], train_acc5es[last_epoch], 100-train_acc1es[last_epoch], valid_acc1es[last_epoch], valid_acc5es[last_epoch], 100-valid_acc1es[last_epoch])) + # measure elapsed time + seed_time.update(time.time() - start_time) + start_time = time.time() + need_time = 'Time Left: {:}'.format( convert_secs2time(seed_time.avg * (len(seeds)-_is-1), True) ) + logger.log('\n<<<***>>> The {:02d}/{:02d}-th seed is {:} other procedures need {:}'.format(_is, len(seeds), seed, need_time)) + logger.close() + + +def generate_meta_info(save_dir, max_node, divide=40): + aa_nas_bench_ss = get_search_spaces('cell', 'nas-bench-201') + archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) + print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2))) + + random.seed( 88 ) # please do not change this line for reproducibility + random.shuffle( archs ) + # to test fixed-random shuffle + #print ('arch [0] : {:}\n---->>>> {:}'.format( archs[0], archs[0].tostr() )) + #print ('arch [9] : {:}\n---->>>> {:}'.format( archs[9], archs[9].tostr() )) + assert archs[0 ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0]) + assert archs[9 ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9]) + assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123]) + total_arch = len(archs) + + num = 50000 + indexes_5W = list(range(num)) + random.seed( 1021 ) + random.shuffle( indexes_5W ) + train_split = sorted( list(set(indexes_5W[:num//2])) ) + valid_split = sorted( list(set(indexes_5W[num//2:])) ) + assert len(train_split) + len(valid_split) == num + assert train_split[0] == 0 and train_split[10] == 26 and train_split[111] == 203 and valid_split[0] == 1 and valid_split[10] == 18 and valid_split[111] == 242, '{:} {:} {:} - {:} {:} {:}'.format(train_split[0], train_split[10], train_split[111], valid_split[0], valid_split[10], valid_split[111]) + splits = {num: {'train': train_split, 'valid': valid_split} } + + info = {'archs' : [x.tostr() for x in archs], + 'total' : total_arch, + 'max_node' : max_node, + 'splits': splits} + + save_dir = Path(save_dir) + save_dir.mkdir(parents=True, exist_ok=True) + save_name = save_dir / 'meta-node-{:}.pth'.format(max_node) + assert not save_name.exists(), '{:} already exist'.format(save_name) + torch.save(info, save_name) + print ('save the meta file into {:}'.format(save_name)) + + """ + script_name_full = save_dir / 'BENCH-201-N{:}.opt-full.script'.format(max_node) + script_name_less = save_dir / 'BENCH-201-N{:}.opt-less.script'.format(max_node) + full_file = open(str(script_name_full), 'w') + less_file = open(str(script_name_less), 'w') + gaps = total_arch // divide + for start in range(0, total_arch, gaps): + xend = min(start+gaps, total_arch) + full_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 0 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) + less_file.write('bash ./scripts-search/NAS-Bench-201/train-models.sh 1 {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) + print ('save the training script into {:} and {:}'.format(script_name_full, script_name_less)) + full_file.close() + less_file.close() + + script_name = save_dir / 'meta-node-{:}.cal-script.txt'.format(max_node) + macro = 'OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0' + with open(str(script_name), 'w') as cfile: + for start in range(0, total_arch, gaps): + xend = min(start+gaps, total_arch) + cfile.write('{:} python exps/NAS-Bench-201/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1)) + print ('save the post-processing script into {:}'.format(script_name)) + """ + +if __name__ == '__main__': + # mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] + parser = argparse.ArgumentParser(description='NATS-Bench (topology search space)', formatter_class=argparse.ArgumentDefaultsHelpFormatter) + parser.add_argument('--mode' , type=str, required=True, help='The script mode.') + parser.add_argument('--save_dir', type=str, default='output/NATS-Bench-topology', help='Folder to save checkpoints and log.') + parser.add_argument('--max_node', type=int, default=4, help='The maximum node in a cell (please do not change it).') + # use for train the model + parser.add_argument('--workers', type=int, default=8, help='number of data loading workers (default: 2)') + parser.add_argument('--srange' , type=str, required=True, help='The range of models to be evaluated') + parser.add_argument('--datasets', type=str, nargs='+', help='The applied datasets.') + parser.add_argument('--xpaths', type=str, nargs='+', help='The root path for this dataset.') + parser.add_argument('--splits', type=int, nargs='+', help='The root path for this dataset.') + parser.add_argument('--hyper', type=str, default='12', choices=['01', '12', '90'], help='The tag for hyper-parameters.') + + parser.add_argument('--seeds' , type=int, nargs='+', help='The range of models to be evaluated') + parser.add_argument('--channel', type=int, default=16, help='The number of channels.') + parser.add_argument('--num_cells', type=int, default=5, help='The number of cells in one stage.') + args = parser.parse_args() + + assert args.mode in ['meta', 'new', 'cover'] or args.mode.startswith('specific-'), 'invalid mode : {:}'.format(args.mode) + + if args.mode == 'meta': + generate_meta_info(args.save_dir, args.max_node) + elif args.mode.startswith('specific'): + assert len(args.mode.split('-')) == 2, 'invalid mode : {:}'.format(args.mode) + model_str = args.mode.split('-')[1] + train_single_model(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, args.use_less>0, \ + tuple(args.seeds), model_str, {'channel': args.channel, 'num_cells': args.num_cells}) + else: + meta_path = Path(args.save_dir) / 'meta-node-{:}.pth'.format(args.max_node) + assert meta_path.exists(), '{:} does not exist.'.format(meta_path) + meta_info = torch.load( meta_path ) + # check whether args is ok + assert len(args.srange) == 2 and args.srange[0] <= args.srange[1], 'invalid length of srange args: {:}'.format(args.srange) + assert len(args.seeds) > 0, 'invalid length of seeds args: {:}'.format(args.seeds) + assert len(args.datasets) == len(args.xpaths) == len(args.splits), 'invalid infos : {:} vs {:} vs {:}'.format(len(args.datasets), len(args.xpaths), len(args.splits)) + assert args.workers > 0, 'invalid number of workers : {:}'.format(args.workers) + + main(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, args.hyper, \ + tuple(args.srange), args.arch_index, tuple(args.seeds), \ + args.mode == 'cover', meta_info, \ + {'channel': args.channel, 'num_cells': args.num_cells}) diff --git a/exps/NAS-Bench-201/xshape-collect.py b/exps/NATS-Bench/sss-collect.py similarity index 80% rename from exps/NAS-Bench-201/xshape-collect.py rename to exps/NATS-Bench/sss-collect.py index 7cd4a41..37afe15 100644 --- a/exps/NAS-Bench-201/xshape-collect.py +++ b/exps/NATS-Bench/sss-collect.py @@ -1,8 +1,15 @@ -##################################################### -# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # -##################################################### -# python exps/NAS-Bench-201/xshape-collect.py -##################################################### +############################################################################## +# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # +############################################################################## +# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07 # +############################################################################## +# This file is used to re-orangize all checkpoints (created by main-sss.py) # +# into a single benchmark file. Besides, for each trial, we will merge the # +# information of all its trials into a single file. # +# # +# Usage: # +# python exps/NATS-Bench/sss-collect.py # +############################################################################## import os, re, sys, time, argparse, collections import numpy as np import torch @@ -14,10 +21,10 @@ lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from log_utils import AverageMeter, time_string, convert_secs2time from config_utils import dict2config -# NAS-Bench-201 related module or function from models import CellStructure, get_cell_based_tiny_net from nas_201_api import ArchResults, ResultsCount from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders +from utils import get_md5_file def account_one_arch(arch_index: int, arch_str: Text, checkpoints: List[Text], datasets: List[Text]) -> ArchResults: @@ -163,41 +170,54 @@ def simplify(save_dir, save_name, nets, total): for seed, xlist in seed2names.items(): seeds.add(seed) nums.append(len(xlist)) - print(' seed={:}, num={:}'.format(seed, len(xlist))) - # assert len(nets) == total == max(nums), 'there are some missed files : {:} vs {:}'.format(max(nums), total) + print(' [seed={:}] there are {:} checkpoints.'.format(seed, len(xlist))) + assert len(nets) == total == max(nums), 'there are some missed files : {:} vs {:}'.format(max(nums), total) print('{:} start simplify the checkpoint.'.format(time_string())) datasets = ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120') - simplify_save_dir, arch2infos, evaluated_indexes = save_dir / save_name, {}, set() - simplify_save_dir.mkdir(parents=True, exist_ok=True) + # Create the directory to save the processed data + # full_save_dir contains all benchmark files with trained weights. + # simplify_save_dir contains all benchmark files without trained weights. + full_save_dir = save_dir / (save_name + '-FULL') + simple_save_dir = save_dir / (save_name + '-SIMPLIFY') + full_save_dir.mkdir(parents=True, exist_ok=True) + simple_save_dir.mkdir(parents=True, exist_ok=True) + # all data in memory + arch2infos, evaluated_indexes = dict(), set() end_time, arch_time = time.time(), AverageMeter() - # for index, arch_str in enumerate(nets): + for index in tqdm(range(total)): arch_str = nets[index] hp2info = OrderedDict() + + full_save_path = full_save_dir / '{:06d}.npy'.format(index) + simple_save_path = simple_save_dir / '{:06d}.npy'.format(index) + for hp in hps: sub_save_dir = save_dir / 'raw-data-{:}'.format(hp) ckps = [sub_save_dir / 'arch-{:06d}-seed-{:}.pth'.format(index, seed) for seed in seeds] ckps = [x for x in ckps if x.exists()] - if len(ckps) == 0: raise ValueError('Invalid data : index={:}, hp={:}'.format(index, hp)) - + if len(ckps) == 0: + raise ValueError('Invalid data : index={:}, hp={:}'.format(index, hp)) + arch_info = account_one_arch(index, arch_str, ckps, datasets) hp2info[hp] = arch_info hp2info = correct_time_related_info(hp2info) evaluated_indexes.add(index) + hp2info['01'].clear_params() # to save some spaces... to_save_data = OrderedDict({'01': hp2info['01'].state_dict(), '12': hp2info['12'].state_dict(), '90': hp2info['90'].state_dict()}) - torch.save(to_save_data, simplify_save_dir / '{:}-FULL.pth'.format(index)) + np.save(str(full_save_path), to_save_data) for hp in hps: hp2info[hp].clear_params() to_save_data = OrderedDict({'01': hp2info['01'].state_dict(), '12': hp2info['12'].state_dict(), '90': hp2info['90'].state_dict()}) - torch.save(to_save_data, simplify_save_dir / '{:}-SIMPLE.pth'.format(index)) + np.save(str(simple_save_path), to_save_data) arch2infos[index] = to_save_data # measure elapsed time arch_time.update(time.time() - end_time) @@ -209,8 +229,9 @@ def simplify(save_dir, save_name, nets, total): 'total_archs': total, 'arch2infos' : arch2infos, 'evaluated_indexes': evaluated_indexes} - save_file_name = save_dir / '{:}.pth'.format(save_name) - torch.save(final_infos, save_file_name) + save_file_name = save_dir / '{:}.npy'.format(save_name) + np.save(str(save_file_name), final_infos) + import pdb; pdb.set_trace() print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), total, save_file_name)) @@ -226,17 +247,17 @@ def traverse_net(candidates: List[int], N: int): if __name__ == '__main__': - - parser = argparse.ArgumentParser(description='NAS-BENCH-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) - parser.add_argument('--base_save_dir', type=str, default='./output/NAS-BENCH-202', help='The base-name of folder to save checkpoints and log.') + parser = argparse.ArgumentParser(description='NATS-Bench (size search space)', formatter_class=argparse.ArgumentDefaultsHelpFormatter) + parser.add_argument('--base_save_dir', type=str, default='./output/NATS-Bench-size', help='The base-name of folder to save checkpoints and log.') parser.add_argument('--candidateC' , type=int, nargs='+', default=[8, 16, 24, 32, 40, 48, 56, 64], help='.') parser.add_argument('--num_layers' , type=int, default=5, help='The number of layers in a network.') parser.add_argument('--check_N' , type=int, default=32768, help='For safety.') - parser.add_argument('--save_name' , type=str, default='simplify', help='The save directory.') + parser.add_argument('--save_name' , type=str, default='process', help='The save directory.') args = parser.parse_args() nets = traverse_net(args.candidateC, args.num_layers) - if len(nets) != args.check_N: raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N)) + if len(nets) != args.check_N: + raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N)) save_dir = Path(args.base_save_dir) simplify(save_dir, args.save_name, nets, args.check_N) diff --git a/lib/nats_bench/api_utils.py b/lib/nats_bench/api_utils.py index a8312bf..2e89f9d 100644 --- a/lib/nats_bench/api_utils.py +++ b/lib/nats_bench/api_utils.py @@ -10,10 +10,15 @@ # History: # [2020.07.31] The first version, where most content reused nas_201_api/api_utils.py # -import os, abc, copy, random, torch, numpy as np -from pathlib import Path +import abc, copy, random, numpy as np +import importlib, warnings from typing import List, Text, Union, Dict, Optional from collections import OrderedDict, defaultdict +USE_TORCH = importlib.find_loader('torch') is not None +if USE_TORCH: + import torch +else: + warnings.warn('Can not find PyTorch, and thus some features maybe invalid.') def remap_dataset_set_names(dataset, metric_on_set, verbose=False): @@ -545,6 +550,8 @@ class ArchResults(object): def create_from_state_dict(state_dict_or_file): x = ArchResults(-1, -1) if isinstance(state_dict_or_file, str): # a file path + if not USE_TORCH: + raise ValueError('Since torch is not imported, this logic can not be used.') state_dict = torch.load(state_dict_or_file, map_location='cpu') elif isinstance(state_dict_or_file, dict): state_dict = state_dict_or_file diff --git a/lib/utils/__init__.py b/lib/utils/__init__.py index 1cc1647..86b4d37 100644 --- a/lib/utils/__init__.py +++ b/lib/utils/__init__.py @@ -3,3 +3,4 @@ from .gpu_manager import GPUManager from .flop_benchmark import get_model_infos, count_parameters_in_MB from .affine_utils import normalize_points, denormalize_points from .affine_utils import identity2affine, solve2theta, affine2image +from .hash_utils import get_md5_file diff --git a/lib/utils/hash_utils.py b/lib/utils/hash_utils.py new file mode 100644 index 0000000..b372cac --- /dev/null +++ b/lib/utils/hash_utils.py @@ -0,0 +1,16 @@ +import os, hashlib + + +def get_md5_file(file_path, post_truncated=5): + md5_hash = hashlib.md5() + if os.path.exists(file_path): + xfile = open(file_path, "rb") + content = xfile.read() + md5_hash.update(content) + digest = md5_hash.hexdigest() + else: + raise ValueError('[get_md5_file] {:} does not exist'.format(file_path)) + if post_truncated is None: + return digest + else: + return digest[-post_truncated:]