This commit is contained in:
D-X-Y 2021-05-28 01:03:02 +08:00
parent cec0cf993b
commit c6db1ef65a
4 changed files with 441 additions and 129 deletions

View File

@ -1,30 +1,33 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
# python exps/LFNA/basic-maml.py --env_version v1 --inner_step 5
# python exps/LFNA/basic-maml.py --env_version v2
# python exps/GeMOSA/baselines/maml-nof.py --env_version v1 --hidden_dim 16 --inner_step 5
# python exps/GeMOSA/baselines/maml-nof.py --env_version v2 --hidden_dim 16
# python exps/GeMOSA/baselines/maml-nof.py --env_version v3 --hidden_dim 32
# python exps/GeMOSA/baselines/maml-nof.py --env_version v4 --hidden_dim 32
#####################################################
import sys, time, copy, torch, random, argparse
from tqdm import tqdm
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
lib_dir = (Path(__file__).parent / ".." / ".." / "..").resolve()
print(lib_dir)
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
from log_utils import time_string
from log_utils import AverageMeter, convert_secs2time
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
)
from xautodl.log_utils import time_string
from xautodl.log_utils import AverageMeter, convert_secs2time
from utils import split_str2indexes
from procedures.advanced_main import basic_train_fn, basic_eval_fn
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
from datasets.synthetic_core import get_synthetic_env, EnvSampler
from models.xcore import get_model
from xlayers import super_core
from lfna_utils import lfna_setup, TimeData
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
from xautodl.datasets.synthetic_core import get_synthetic_env
from xautodl.models.xcore import get_model
from xautodl.xlayers import super_core
class MAML:
@ -34,31 +37,22 @@ class MAML:
self, network, criterion, epochs, meta_lr, inner_lr=0.01, inner_step=1
):
self.criterion = criterion
# self.container = container
self.network = network
self.meta_optimizer = torch.optim.Adam(
self.network.parameters(), lr=meta_lr, amsgrad=True
)
self.meta_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
self.meta_optimizer,
milestones=[
int(epochs * 0.8),
int(epochs * 0.9),
],
gamma=0.1,
)
self.inner_lr = inner_lr
self.inner_step = inner_step
self._best_info = dict(state_dict=None, iepoch=None, score=None)
print("There are {:} weights.".format(self.network.get_w_container().numel()))
def adapt(self, dataset):
def adapt(self, x, y):
# create a container for the future timestamp
container = self.network.get_w_container()
for k in range(0, self.inner_step):
y_hat = self.network.forward_with_container(dataset.x, container)
loss = self.criterion(y_hat, dataset.y)
y_hat = self.network.forward_with_container(x, container)
loss = self.criterion(y_hat, y)
grads = torch.autograd.grad(loss, container.parameters())
container = container.additive([-self.inner_lr * grad for grad in grads])
return container
@ -73,7 +67,6 @@ class MAML:
def step(self):
torch.nn.utils.clip_grad_norm_(self.network.parameters(), 1.0)
self.meta_optimizer.step()
self.meta_lr_scheduler.step()
def zero_grad(self):
self.meta_optimizer.zero_grad()
@ -82,14 +75,12 @@ class MAML:
self.criterion.load_state_dict(state_dict["criterion"])
self.network.load_state_dict(state_dict["network"])
self.meta_optimizer.load_state_dict(state_dict["meta_optimizer"])
self.meta_lr_scheduler.load_state_dict(state_dict["meta_lr_scheduler"])
def state_dict(self):
state_dict = dict()
state_dict["criterion"] = self.criterion.state_dict()
state_dict["network"] = self.network.state_dict()
state_dict["meta_optimizer"] = self.meta_optimizer.state_dict()
state_dict["meta_lr_scheduler"] = self.meta_lr_scheduler.state_dict()
return state_dict
def save_best(self, score):
@ -101,12 +92,39 @@ class MAML:
def main(args):
logger, env_info, model_kwargs = lfna_setup(args)
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
train_env = get_synthetic_env(mode="train", version=args.env_version)
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
trainval_env = get_synthetic_env(mode="trainval", version=args.env_version)
test_env = get_synthetic_env(mode="test", version=args.env_version)
all_env = get_synthetic_env(mode=None, version=args.env_version)
logger.log("The training enviornment: {:}".format(train_env))
logger.log("The validation enviornment: {:}".format(valid_env))
logger.log("The trainval enviornment: {:}".format(trainval_env))
logger.log("The total enviornment: {:}".format(all_env))
logger.log("The test enviornment: {:}".format(test_env))
model_kwargs = dict(
config=dict(model_type="norm_mlp"),
input_dim=all_env.meta_info["input_dim"],
output_dim=all_env.meta_info["output_dim"],
hidden_dims=[args.hidden_dim] * 2,
act_cls="relu",
norm_cls="layer_norm_1d",
)
model = get_model(**model_kwargs)
dynamic_env = get_synthetic_env(mode="train", version=args.env_version)
criterion = torch.nn.MSELoss()
model = model.to(args.device)
if all_env.meta_info["task"] == "regression":
criterion = torch.nn.MSELoss()
metric_cls = MSEMetric
elif all_env.meta_info["task"] == "classification":
criterion = torch.nn.CrossEntropyLoss()
metric_cls = Top1AccMetric
else:
raise ValueError(
"This task ({:}) is not supported.".format(all_env.meta_info["task"])
)
maml = MAML(
model, criterion, args.epochs, args.meta_lr, args.inner_lr, args.inner_step
@ -127,14 +145,16 @@ def main(args):
maml.zero_grad()
meta_losses = []
for ibatch in range(args.meta_batch):
future_timestamp = dynamic_env.random_timestamp()
_, (future_x, future_y) = dynamic_env(future_timestamp)
past_timestamp = (
future_timestamp - args.prev_time * dynamic_env.timestamp_interval
)
_, (past_x, past_y) = dynamic_env(past_timestamp)
future_container = maml.adapt(TimeData(past_timestamp, past_x, past_y))
future_idx = random.randint(0, len(trainval_env) - 1)
future_t, (future_x, future_y) = trainval_env[future_idx]
# -->>
seq_times = trainval_env.get_seq_times(future_idx, args.seq_length)
_, (allxs, allys) = trainval_env.seq_call(seq_times)
allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
if trainval_env.meta_info["task"] == "classification":
allys = allys.view(-1)
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
future_container = maml.adapt(historical_x, historical_y)
future_y_hat = maml.predict(future_x, future_container)
future_loss = maml.criterion(future_y_hat, future_y)
meta_losses.append(future_loss)
@ -157,37 +177,67 @@ def main(args):
# meta-test
maml.load_best()
eval_env = env_info["dynamic_env"]
assert eval_env.timestamp_interval == dynamic_env.timestamp_interval
w_container_per_epoch = dict()
for idx in range(args.prev_time, len(eval_env)):
future_timestamp, (future_x, future_y) = eval_env[idx]
past_timestamp = (
future_timestamp.item() - args.prev_time * eval_env.timestamp_interval
)
_, (past_x, past_y) = eval_env(past_timestamp)
future_container = maml.adapt(TimeData(past_timestamp, past_x, past_y))
w_container_per_epoch[idx] = future_container.no_grad_clone()
def finetune(index):
seq_times = test_env.get_seq_times(index, args.seq_length)
_, (allxs, allys) = test_env.seq_call(seq_times)
allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
if test_env.meta_info["task"] == "classification":
allys = allys.view(-1)
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
future_container = maml.adapt(historical_x, historical_y)
historical_y_hat = maml.predict(historical_x, future_container)
train_metric = metric_cls(True)
# model.analyze_weights()
with torch.no_grad():
future_y_hat = maml.predict(future_x, w_container_per_epoch[idx])
future_loss = maml.criterion(future_y_hat, future_y)
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
save_checkpoint(
{"w_container_per_epoch": w_container_per_epoch},
logger.path(None) / "final-ckp.pth",
logger,
)
train_metric(historical_y_hat, historical_y)
train_results = train_metric.get_info()
return train_results, future_container
train_results, future_container = finetune(0)
metric = metric_cls(True)
per_timestamp_time, start_time = AverageMeter(), time.time()
for idx, (future_time, (future_x, future_y)) in enumerate(test_env):
need_time = "Time Left: {:}".format(
convert_secs2time(per_timestamp_time.avg * (len(test_env) - idx), True)
)
logger.log(
"[{:}]".format(time_string())
+ " [{:04d}/{:04d}]".format(idx, len(test_env))
+ " "
+ need_time
)
# build optimizer
future_x.to(args.device), future_y.to(args.device)
future_y_hat = maml.predict(future_x, future_container)
future_loss = criterion(future_y_hat, future_y)
metric(future_y_hat, future_y)
log_str = (
"[{:}]".format(time_string())
+ " [{:04d}/{:04d}]".format(idx, len(test_env))
+ " train-score: {:.5f}, eval-score: {:.5f}".format(
train_results["score"], metric.get_info()["score"]
)
)
logger.log(log_str)
logger.log("")
per_timestamp_time.update(time.time() - start_time)
start_time = time.time()
logger.log("-" * 200 + "\n")
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser("Use the data in the past.")
parser = argparse.ArgumentParser("Use the maml.")
parser.add_argument(
"--save_dir",
type=str,
default="./outputs/lfna-synthetic/use-maml",
default="./outputs/lfna-synthetic/use-maml-nft",
help="The checkpoint directory.",
)
parser.add_argument(
@ -205,15 +255,9 @@ if __name__ == "__main__":
parser.add_argument(
"--meta_lr",
type=float,
default=0.01,
default=0.02,
help="The learning rate for the MAML optimizer (default is Adam)",
)
parser.add_argument(
"--fail_thresh",
type=float,
default=1000,
help="The threshold for the failure, which we reuse the previous best model",
)
parser.add_argument(
"--inner_lr",
type=float,
@ -224,15 +268,12 @@ if __name__ == "__main__":
"--inner_step", type=int, default=1, help="The inner loop steps for MAML."
)
parser.add_argument(
"--prev_time",
type=int,
default=5,
help="The gap between prev_time and current_timestamp",
"--seq_length", type=int, default=20, help="The sequence length."
)
parser.add_argument(
"--meta_batch",
type=int,
default=64,
default=256,
help="The batch size for the meta-model",
)
parser.add_argument(
@ -247,6 +288,12 @@ if __name__ == "__main__":
default=50,
help="The maximum epochs for early stop.",
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="",
)
parser.add_argument(
"--workers",
type=int,
@ -259,12 +306,11 @@ if __name__ == "__main__":
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
assert args.save_dir is not None, "The save dir argument can not be None"
args.save_dir = "{:}-s{:}-mlr{:}-d{:}-prev{:}-e{:}-env{:}".format(
args.save_dir = "{:}-s{:}-mlr{:}-d{:}-e{:}-env{:}".format(
args.save_dir,
args.inner_step,
args.meta_lr,
args.hidden_dim,
args.prev_time,
args.epochs,
args.env_version,
)

View File

@ -0,0 +1,317 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
# python exps/GeMOSA/baselines/maml-nof.py --env_version v1 --hidden_dim 16 --inner_step 5
# python exps/GeMOSA/baselines/maml-nof.py --env_version v2 --hidden_dim 16
# python exps/GeMOSA/baselines/maml-nof.py --env_version v3 --hidden_dim 32
# python exps/GeMOSA/baselines/maml-nof.py --env_version v4 --hidden_dim 32
#####################################################
import sys, time, copy, torch, random, argparse
from tqdm import tqdm
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "..").resolve()
print(lib_dir)
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
)
from xautodl.log_utils import time_string
from xautodl.log_utils import AverageMeter, convert_secs2time
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
from xautodl.datasets.synthetic_core import get_synthetic_env
from xautodl.models.xcore import get_model
from xautodl.xlayers import super_core
class MAML:
"""A LFNA meta-model that uses the MLP as delta-net."""
def __init__(
self, network, criterion, epochs, meta_lr, inner_lr=0.01, inner_step=1
):
self.criterion = criterion
self.network = network
self.meta_optimizer = torch.optim.Adam(
self.network.parameters(), lr=meta_lr, amsgrad=True
)
self.inner_lr = inner_lr
self.inner_step = inner_step
self._best_info = dict(state_dict=None, iepoch=None, score=None)
print("There are {:} weights.".format(self.network.get_w_container().numel()))
def adapt(self, x, y):
# create a container for the future timestamp
container = self.network.get_w_container()
for k in range(0, self.inner_step):
y_hat = self.network.forward_with_container(x, container)
loss = self.criterion(y_hat, y)
grads = torch.autograd.grad(loss, container.parameters())
container = container.additive([-self.inner_lr * grad for grad in grads])
return container
def predict(self, x, container=None):
if container is not None:
y_hat = self.network.forward_with_container(x, container)
else:
y_hat = self.network(x)
return y_hat
def step(self):
torch.nn.utils.clip_grad_norm_(self.network.parameters(), 1.0)
self.meta_optimizer.step()
def zero_grad(self):
self.meta_optimizer.zero_grad()
def load_state_dict(self, state_dict):
self.criterion.load_state_dict(state_dict["criterion"])
self.network.load_state_dict(state_dict["network"])
self.meta_optimizer.load_state_dict(state_dict["meta_optimizer"])
def state_dict(self):
state_dict = dict()
state_dict["criterion"] = self.criterion.state_dict()
state_dict["network"] = self.network.state_dict()
state_dict["meta_optimizer"] = self.meta_optimizer.state_dict()
return state_dict
def save_best(self, score):
success, best_score = self.network.save_best(score)
return success, best_score
def load_best(self):
self.network.load_best()
def main(args):
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
train_env = get_synthetic_env(mode="train", version=args.env_version)
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
trainval_env = get_synthetic_env(mode="trainval", version=args.env_version)
test_env = get_synthetic_env(mode="test", version=args.env_version)
all_env = get_synthetic_env(mode=None, version=args.env_version)
logger.log("The training enviornment: {:}".format(train_env))
logger.log("The validation enviornment: {:}".format(valid_env))
logger.log("The trainval enviornment: {:}".format(trainval_env))
logger.log("The total enviornment: {:}".format(all_env))
logger.log("The test enviornment: {:}".format(test_env))
model_kwargs = dict(
config=dict(model_type="norm_mlp"),
input_dim=all_env.meta_info["input_dim"],
output_dim=all_env.meta_info["output_dim"],
hidden_dims=[args.hidden_dim] * 2,
act_cls="relu",
norm_cls="layer_norm_1d",
)
model = get_model(**model_kwargs)
model = model.to(args.device)
if all_env.meta_info["task"] == "regression":
criterion = torch.nn.MSELoss()
metric_cls = MSEMetric
elif all_env.meta_info["task"] == "classification":
criterion = torch.nn.CrossEntropyLoss()
metric_cls = Top1AccMetric
else:
raise ValueError(
"This task ({:}) is not supported.".format(all_env.meta_info["task"])
)
maml = MAML(
model, criterion, args.epochs, args.meta_lr, args.inner_lr, args.inner_step
)
# meta-training
last_success_epoch = 0
per_epoch_time, start_time = AverageMeter(), time.time()
for iepoch in range(args.epochs):
need_time = "Time Left: {:}".format(
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
)
head_str = (
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
+ need_time
)
maml.zero_grad()
meta_losses = []
for ibatch in range(args.meta_batch):
future_idx = random.randint(0, len(trainval_env) - 1)
future_t, (future_x, future_y) = trainval_env[future_idx]
# -->>
seq_times = trainval_env.get_seq_times(future_idx, args.seq_length)
_, (allxs, allys) = trainval_env.seq_call(seq_times)
allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
if trainval_env.meta_info["task"] == "classification":
allys = allys.view(-1)
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
future_container = maml.adapt(historical_x, historical_y)
future_y_hat = maml.predict(future_x, future_container)
future_loss = maml.criterion(future_y_hat, future_y)
meta_losses.append(future_loss)
meta_loss = torch.stack(meta_losses).mean()
meta_loss.backward()
maml.step()
logger.log(head_str + " meta-loss: {:.4f}".format(meta_loss.item()))
success, best_score = maml.save_best(-meta_loss.item())
if success:
logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
save_checkpoint(maml.state_dict(), logger.path("model"), logger)
last_success_epoch = iepoch
if iepoch - last_success_epoch >= args.early_stop_thresh:
logger.log("Early stop at {:}".format(iepoch))
break
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
# meta-test
maml.load_best()
def finetune(index):
seq_times = test_env.get_seq_times(index, args.seq_length)
_, (allxs, allys) = test_env.seq_call(seq_times)
allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
if test_env.meta_info["task"] == "classification":
allys = allys.view(-1)
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
future_container = maml.adapt(historical_x, historical_y)
historical_y_hat = maml.predict(historical_x, future_container)
train_metric = metric_cls(True)
# model.analyze_weights()
with torch.no_grad():
train_metric(historical_y_hat, historical_y)
train_results = train_metric.get_info()
return train_results, future_container
train_results, future_container = finetune(0)
metric = metric_cls(True)
per_timestamp_time, start_time = AverageMeter(), time.time()
for idx, (future_time, (future_x, future_y)) in enumerate(test_env):
need_time = "Time Left: {:}".format(
convert_secs2time(per_timestamp_time.avg * (len(test_env) - idx), True)
)
logger.log(
"[{:}]".format(time_string())
+ " [{:04d}/{:04d}]".format(idx, len(test_env))
+ " "
+ need_time
)
# build optimizer
future_x.to(args.device), future_y.to(args.device)
future_y_hat = maml.predict(future_x, future_container)
future_loss = criterion(future_y_hat, future_y)
metric(future_y_hat, future_y)
log_str = (
"[{:}]".format(time_string())
+ " [{:04d}/{:04d}]".format(idx, len(test_env))
+ " train-score: {:.5f}, eval-score: {:.5f}".format(
train_results["score"], metric.get_info()["score"]
)
)
logger.log(log_str)
logger.log("")
per_timestamp_time.update(time.time() - start_time)
start_time = time.time()
logger.log("-" * 200 + "\n")
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser("Use the maml.")
parser.add_argument(
"--save_dir",
type=str,
default="./outputs/lfna-synthetic/use-maml-nft",
help="The checkpoint directory.",
)
parser.add_argument(
"--env_version",
type=str,
required=True,
help="The synthetic enviornment version.",
)
parser.add_argument(
"--hidden_dim",
type=int,
default=16,
help="The hidden dimension.",
)
parser.add_argument(
"--meta_lr",
type=float,
default=0.02,
help="The learning rate for the MAML optimizer (default is Adam)",
)
parser.add_argument(
"--inner_lr",
type=float,
default=0.005,
help="The learning rate for the inner optimization",
)
parser.add_argument(
"--inner_step", type=int, default=1, help="The inner loop steps for MAML."
)
parser.add_argument(
"--seq_length", type=int, default=20, help="The sequence length."
)
parser.add_argument(
"--meta_batch",
type=int,
default=256,
help="The batch size for the meta-model",
)
parser.add_argument(
"--epochs",
type=int,
default=2000,
help="The total number of epochs.",
)
parser.add_argument(
"--early_stop_thresh",
type=int,
default=50,
help="The maximum epochs for early stop.",
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="",
)
parser.add_argument(
"--workers",
type=int,
default=4,
help="The number of data loading workers (default: 4)",
)
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
assert args.save_dir is not None, "The save dir argument can not be None"
args.save_dir = "{:}-s{:}-mlr{:}-d{:}-e{:}-env{:}".format(
args.save_dir,
args.inner_step,
args.meta_lr,
args.hidden_dim,
args.epochs,
args.env_version,
)
main(args)

View File

@ -28,7 +28,6 @@ from xautodl.log_utils import AverageMeter, convert_secs2time
from xautodl.utils import split_str2indexes
from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn
from xautodl.procedures.metric_utils import (
SaveMetric,
MSEMetric,

View File

@ -1,50 +0,0 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
import copy
import torch
from tqdm import tqdm
from xautodl.procedures import prepare_seed, prepare_logger
from xautodl.datasets.synthetic_core import get_synthetic_env
def train_model(model, dataset, lr, epochs):
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr, amsgrad=True)
best_loss, best_param = None, None
for _iepoch in range(epochs):
preds = model(dataset.x)
optimizer.zero_grad()
loss = criterion(preds, dataset.y)
loss.backward()
optimizer.step()
# save best
if best_loss is None or best_loss > loss.item():
best_loss = loss.item()
best_param = copy.deepcopy(model.state_dict())
model.load_state_dict(best_param)
return best_loss
class TimeData:
def __init__(self, timestamp, xs, ys):
self._timestamp = timestamp
self._xs = xs
self._ys = ys
@property
def x(self):
return self._xs
@property
def y(self):
return self._ys
@property
def timestamp(self):
return self._timestamp
def __repr__(self):
return "{name}(timestamp={timestamp}, with {num} samples)".format(
name=self.__class__.__name__, timestamp=self._timestamp, num=len(self._xs)
)