Add more algorithms
This commit is contained in:
		
							
								
								
									
										105
									
								
								lib/models/CifarDenseNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										105
									
								
								lib/models/CifarDenseNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,105 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class Bottleneck(nn.Module): | ||||
|   def __init__(self, nChannels, growthRate): | ||||
|     super(Bottleneck, self).__init__() | ||||
|     interChannels = 4*growthRate | ||||
|     self.bn1 = nn.BatchNorm2d(nChannels) | ||||
|     self.conv1 = nn.Conv2d(nChannels, interChannels, kernel_size=1, bias=False) | ||||
|     self.bn2 = nn.BatchNorm2d(interChannels) | ||||
|     self.conv2 = nn.Conv2d(interChannels, growthRate, kernel_size=3, padding=1, bias=False) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     out = self.conv1(F.relu(self.bn1(x))) | ||||
|     out = self.conv2(F.relu(self.bn2(out))) | ||||
|     out = torch.cat((x, out), 1) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class SingleLayer(nn.Module): | ||||
|   def __init__(self, nChannels, growthRate): | ||||
|     super(SingleLayer, self).__init__() | ||||
|     self.bn1 = nn.BatchNorm2d(nChannels) | ||||
|     self.conv1 = nn.Conv2d(nChannels, growthRate, kernel_size=3, padding=1, bias=False) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     out = self.conv1(F.relu(self.bn1(x))) | ||||
|     out = torch.cat((x, out), 1) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class Transition(nn.Module): | ||||
|   def __init__(self, nChannels, nOutChannels): | ||||
|     super(Transition, self).__init__() | ||||
|     self.bn1 = nn.BatchNorm2d(nChannels) | ||||
|     self.conv1 = nn.Conv2d(nChannels, nOutChannels, kernel_size=1, bias=False) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     out = self.conv1(F.relu(self.bn1(x))) | ||||
|     out = F.avg_pool2d(out, 2) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class DenseNet(nn.Module): | ||||
|   def __init__(self, growthRate, depth, reduction, nClasses, bottleneck): | ||||
|     super(DenseNet, self).__init__() | ||||
|  | ||||
|     if bottleneck:  nDenseBlocks = int( (depth-4) / 6 ) | ||||
|     else         :  nDenseBlocks = int( (depth-4) / 3 ) | ||||
|  | ||||
|     self.message = 'CifarDenseNet : block : {:}, depth : {:}, reduction : {:}, growth-rate = {:}, class = {:}'.format('bottleneck' if bottleneck else 'basic', depth, reduction, growthRate, nClasses) | ||||
|  | ||||
|     nChannels = 2*growthRate | ||||
|     self.conv1 = nn.Conv2d(3, nChannels, kernel_size=3, padding=1, bias=False) | ||||
|  | ||||
|     self.dense1 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck) | ||||
|     nChannels += nDenseBlocks*growthRate | ||||
|     nOutChannels = int(math.floor(nChannels*reduction)) | ||||
|     self.trans1 = Transition(nChannels, nOutChannels) | ||||
|  | ||||
|     nChannels = nOutChannels | ||||
|     self.dense2 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck) | ||||
|     nChannels += nDenseBlocks*growthRate | ||||
|     nOutChannels = int(math.floor(nChannels*reduction)) | ||||
|     self.trans2 = Transition(nChannels, nOutChannels) | ||||
|  | ||||
|     nChannels = nOutChannels | ||||
|     self.dense3 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck) | ||||
|     nChannels += nDenseBlocks*growthRate | ||||
|  | ||||
|     self.act = nn.Sequential( | ||||
|                   nn.BatchNorm2d(nChannels), nn.ReLU(inplace=True), | ||||
|                   nn.AvgPool2d(8)) | ||||
|     self.fc  = nn.Linear(nChannels, nClasses) | ||||
|  | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def _make_dense(self, nChannels, growthRate, nDenseBlocks, bottleneck): | ||||
|     layers = [] | ||||
|     for i in range(int(nDenseBlocks)): | ||||
|       if bottleneck: | ||||
|         layers.append(Bottleneck(nChannels, growthRate)) | ||||
|       else: | ||||
|         layers.append(SingleLayer(nChannels, growthRate)) | ||||
|       nChannels += growthRate | ||||
|     return nn.Sequential(*layers) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     out = self.conv1( inputs ) | ||||
|     out = self.trans1(self.dense1(out)) | ||||
|     out = self.trans2(self.dense2(out)) | ||||
|     out = self.dense3(out) | ||||
|     features = self.act(out) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     out = self.fc(features) | ||||
|     return features, out | ||||
							
								
								
									
										160
									
								
								lib/models/CifarResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										160
									
								
								lib/models/CifarResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,160 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from .initialization import initialize_resnet | ||||
| from .SharedUtils    import additive_func | ||||
|  | ||||
|  | ||||
| class Downsample(nn.Module):   | ||||
|  | ||||
|   def __init__(self, nIn, nOut, stride): | ||||
|     super(Downsample, self).__init__()  | ||||
|     assert stride == 2 and nOut == 2*nIn, 'stride:{} IO:{},{}'.format(stride, nIn, nOut) | ||||
|     self.in_dim  = nIn | ||||
|     self.out_dim = nOut | ||||
|     self.avg  = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)    | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=1, stride=1, padding=0, bias=False) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x   = self.avg(x) | ||||
|     out = self.conv(x) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|    | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, bias=bias) | ||||
|     self.bn   = nn.BatchNorm2d(nOut) | ||||
|     if relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else   : self.relu = None | ||||
|     self.out_dim = nOut | ||||
|     self.num_conv = 1 | ||||
|  | ||||
|   def forward(self, x): | ||||
|     conv = self.conv( x ) | ||||
|     bn   = self.bn( conv ) | ||||
|     if self.relu: return self.relu( bn ) | ||||
|     else        : return bn | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   expansion = 1 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, False) | ||||
|     if stride == 2: | ||||
|       self.downsample = Downsample(inplanes, planes, stride) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim = planes | ||||
|     self.num_conv = 2 | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = additive_func(residual, basicblock) | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, False) | ||||
|     if stride == 2: | ||||
|       self.downsample = Downsample(inplanes, planes*self.expansion, stride) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim = planes * self.expansion | ||||
|     self.num_conv = 3 | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = additive_func(residual, bottleneck) | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class CifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, num_classes, zero_init_residual): | ||||
|     super(CifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|  | ||||
|     self.message     = 'CifarResNet : Block : {:}, Depth : {:}, Layers for each block : {:}'.format(block_name, depth, layer_blocks) | ||||
|     self.num_classes = num_classes | ||||
|     self.channels    = [16] | ||||
|     self.layers      = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, True) ] ) | ||||
|     for stage in range(3): | ||||
|       for iL in range(layer_blocks): | ||||
|         iC     = self.channels[-1] | ||||
|         planes = 16 * (2**stage) | ||||
|         stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||
|  | ||||
|     self.avgpool = nn.AvgPool2d(8) | ||||
|     self.classifier = nn.Linear(module.out_dim, num_classes) | ||||
|     assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|  | ||||
|     self.apply(initialize_resnet) | ||||
|     if zero_init_residual: | ||||
|       for m in self.modules(): | ||||
|         if isinstance(m, ResNetBasicblock): | ||||
|           nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|         elif isinstance(m, ResNetBottleneck): | ||||
|           nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										94
									
								
								lib/models/CifarWideResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										94
									
								
								lib/models/CifarWideResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,94 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class WideBasicblock(nn.Module): | ||||
|   def __init__(self, inplanes, planes, stride, dropout=False): | ||||
|     super(WideBasicblock, self).__init__() | ||||
|  | ||||
|     self.bn_a = nn.BatchNorm2d(inplanes) | ||||
|     self.conv_a = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | ||||
|  | ||||
|     self.bn_b = nn.BatchNorm2d(planes) | ||||
|     if dropout: | ||||
|       self.dropout = nn.Dropout2d(p=0.5, inplace=True) | ||||
|     else: | ||||
|       self.dropout = None | ||||
|     self.conv_b = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) | ||||
|  | ||||
|     if inplanes != planes: | ||||
|       self.downsample = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, padding=0, bias=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|  | ||||
|   def forward(self, x): | ||||
|  | ||||
|     basicblock = self.bn_a(x) | ||||
|     basicblock = F.relu(basicblock) | ||||
|     basicblock = self.conv_a(basicblock) | ||||
|  | ||||
|     basicblock = self.bn_b(basicblock) | ||||
|     basicblock = F.relu(basicblock) | ||||
|     if self.dropout is not None: | ||||
|       basicblock = self.dropout(basicblock) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       x = self.downsample(x) | ||||
|      | ||||
|     return x + basicblock | ||||
|  | ||||
|  | ||||
| class CifarWideResNet(nn.Module): | ||||
|   """ | ||||
|   ResNet optimized for the Cifar dataset, as specified in | ||||
|   https://arxiv.org/abs/1512.03385.pdf | ||||
|   """ | ||||
|   def __init__(self, depth, widen_factor, num_classes, dropout): | ||||
|     super(CifarWideResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     assert (depth - 4) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|     layer_blocks = (depth - 4) // 6 | ||||
|     print ('CifarPreResNet : Depth : {} , Layers for each block : {}'.format(depth, layer_blocks)) | ||||
|  | ||||
|     self.num_classes = num_classes | ||||
|     self.dropout = dropout | ||||
|     self.conv_3x3 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) | ||||
|  | ||||
|     self.message  = 'Wide ResNet : depth={:}, widen_factor={:}, class={:}'.format(depth, widen_factor, num_classes) | ||||
|     self.inplanes = 16 | ||||
|     self.stage_1 = self._make_layer(WideBasicblock, 16*widen_factor, layer_blocks, 1) | ||||
|     self.stage_2 = self._make_layer(WideBasicblock, 32*widen_factor, layer_blocks, 2) | ||||
|     self.stage_3 = self._make_layer(WideBasicblock, 64*widen_factor, layer_blocks, 2) | ||||
|     self.lastact = nn.Sequential(nn.BatchNorm2d(64*widen_factor), nn.ReLU(inplace=True)) | ||||
|     self.avgpool = nn.AvgPool2d(8) | ||||
|     self.classifier = nn.Linear(64*widen_factor, num_classes) | ||||
|  | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def _make_layer(self, block, planes, blocks, stride): | ||||
|  | ||||
|     layers = [] | ||||
|     layers.append(block(self.inplanes, planes, stride, self.dropout)) | ||||
|     self.inplanes = planes | ||||
|     for i in range(1, blocks): | ||||
|       layers.append(block(self.inplanes, planes, 1, self.dropout)) | ||||
|  | ||||
|     return nn.Sequential(*layers) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = self.conv_3x3(x) | ||||
|     x = self.stage_1(x) | ||||
|     x = self.stage_2(x) | ||||
|     x = self.stage_3(x) | ||||
|     x = self.lastact(x) | ||||
|     x = self.avgpool(x) | ||||
|     features = x.view(x.size(0), -1) | ||||
|     outs     = self.classifier(features) | ||||
|     return features, outs | ||||
							
								
								
									
										172
									
								
								lib/models/ImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										172
									
								
								lib/models/ImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,172 @@ | ||||
| # Deep Residual Learning for Image Recognition, CVPR 2016 | ||||
| import torch.nn as nn | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
| def conv3x3(in_planes, out_planes, stride=1, groups=1): | ||||
|   return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False) | ||||
|  | ||||
|  | ||||
| def conv1x1(in_planes, out_planes, stride=1): | ||||
|   return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | ||||
|  | ||||
|  | ||||
| class BasicBlock(nn.Module): | ||||
|   expansion = 1 | ||||
|  | ||||
|   def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64): | ||||
|     super(BasicBlock, self).__init__() | ||||
|     if groups != 1 or base_width != 64: | ||||
|       raise ValueError('BasicBlock only supports groups=1 and base_width=64') | ||||
|     # Both self.conv1 and self.downsample layers downsample the input when stride != 1 | ||||
|     self.conv1 = conv3x3(inplanes, planes, stride) | ||||
|     self.bn1   = nn.BatchNorm2d(planes) | ||||
|     self.relu  = nn.ReLU(inplace=True) | ||||
|     self.conv2 = conv3x3(planes, planes) | ||||
|     self.bn2   = nn.BatchNorm2d(planes) | ||||
|     self.downsample = downsample | ||||
|     self.stride = stride | ||||
|  | ||||
|   def forward(self, x): | ||||
|     identity = x | ||||
|  | ||||
|     out = self.conv1(x) | ||||
|     out = self.bn1(out) | ||||
|     out = self.relu(out) | ||||
|  | ||||
|     out = self.conv2(out) | ||||
|     out = self.bn2(out) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       identity = self.downsample(x) | ||||
|  | ||||
|     out += identity | ||||
|     out = self.relu(out) | ||||
|  | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class Bottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|  | ||||
|   def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64): | ||||
|     super(Bottleneck, self).__init__() | ||||
|     width = int(planes * (base_width / 64.)) * groups | ||||
|     # Both self.conv2 and self.downsample layers downsample the input when stride != 1 | ||||
|     self.conv1 = conv1x1(inplanes, width) | ||||
|     self.bn1   = nn.BatchNorm2d(width) | ||||
|     self.conv2 = conv3x3(width, width, stride, groups) | ||||
|     self.bn2   = nn.BatchNorm2d(width) | ||||
|     self.conv3 = conv1x1(width, planes * self.expansion) | ||||
|     self.bn3   = nn.BatchNorm2d(planes * self.expansion) | ||||
|     self.relu  = nn.ReLU(inplace=True) | ||||
|     self.downsample = downsample | ||||
|     self.stride = stride | ||||
|  | ||||
|   def forward(self, x): | ||||
|     identity = x | ||||
|  | ||||
|     out = self.conv1(x) | ||||
|     out = self.bn1(out) | ||||
|     out = self.relu(out) | ||||
|  | ||||
|     out = self.conv2(out) | ||||
|     out = self.bn2(out) | ||||
|     out = self.relu(out) | ||||
|  | ||||
|     out = self.conv3(out) | ||||
|     out = self.bn3(out) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       identity = self.downsample(x) | ||||
|  | ||||
|     out += identity | ||||
|     out = self.relu(out) | ||||
|  | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, layers, deep_stem, num_classes, zero_init_residual, groups, width_per_group): | ||||
|     super(ResNet, self).__init__() | ||||
|  | ||||
|     #planes = [int(width_per_group * groups * 2 ** i) for i in range(4)] | ||||
|     if block_name == 'BasicBlock'  : block= BasicBlock | ||||
|     elif block_name == 'Bottleneck': block= Bottleneck | ||||
|     else                           : raise ValueError('invalid block-name : {:}'.format(block_name)) | ||||
|  | ||||
|     if not deep_stem: | ||||
|       self.conv = nn.Sequential( | ||||
|                    nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False), | ||||
|                    nn.BatchNorm2d(64), nn.ReLU(inplace=True)) | ||||
|     else: | ||||
|       self.conv = nn.Sequential( | ||||
|                    nn.Conv2d(           3, 32, kernel_size=3, stride=2, padding=1, bias=False), | ||||
|                    nn.BatchNorm2d(32), nn.ReLU(inplace=True), | ||||
|                    nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False), | ||||
|                    nn.BatchNorm2d(32), nn.ReLU(inplace=True), | ||||
|                    nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False), | ||||
|                    nn.BatchNorm2d(64), nn.ReLU(inplace=True)) | ||||
|     self.inplanes = 64 | ||||
|     self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||||
|     self.layer1 = self._make_layer(block, 64 , layers[0], stride=1, groups=groups, base_width=width_per_group) | ||||
|     self.layer2 = self._make_layer(block, 128, layers[1], stride=2, groups=groups, base_width=width_per_group) | ||||
|     self.layer3 = self._make_layer(block, 256, layers[2], stride=2, groups=groups, base_width=width_per_group) | ||||
|     self.layer4 = self._make_layer(block, 512, layers[3], stride=2, groups=groups, base_width=width_per_group) | ||||
|     self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | ||||
|     self.fc      = nn.Linear(512 * block.expansion, num_classes) | ||||
|     self.message = 'block = {:}, layers = {:}, deep_stem = {:}, num_classes = {:}'.format(block, layers, deep_stem, num_classes) | ||||
|  | ||||
|     self.apply( initialize_resnet ) | ||||
|  | ||||
|     # Zero-initialize the last BN in each residual branch, | ||||
|     # so that the residual branch starts with zeros, and each residual block behaves like an identity. | ||||
|     # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 | ||||
|     if zero_init_residual: | ||||
|       for m in self.modules(): | ||||
|         if isinstance(m, Bottleneck): | ||||
|           nn.init.constant_(m.bn3.weight, 0) | ||||
|         elif isinstance(m, BasicBlock): | ||||
|           nn.init.constant_(m.bn2.weight, 0) | ||||
|  | ||||
|   def _make_layer(self, block, planes, blocks, stride, groups, base_width): | ||||
|     downsample = None | ||||
|     if stride != 1 or self.inplanes != planes * block.expansion: | ||||
|       if stride == 2: | ||||
|         downsample = nn.Sequential( | ||||
|           nn.AvgPool2d(kernel_size=2, stride=2, padding=0), | ||||
|           conv1x1(self.inplanes, planes * block.expansion, 1), | ||||
|           nn.BatchNorm2d(planes * block.expansion), | ||||
|         ) | ||||
|       elif stride == 1: | ||||
|         downsample = nn.Sequential( | ||||
|           conv1x1(self.inplanes, planes * block.expansion, stride), | ||||
|           nn.BatchNorm2d(planes * block.expansion), | ||||
|         ) | ||||
|       else: raise ValueError('invalid stride [{:}] for downsample'.format(stride)) | ||||
|  | ||||
|     layers = [] | ||||
|     layers.append(block(self.inplanes, planes, stride, downsample, groups, base_width)) | ||||
|     self.inplanes = planes * block.expansion | ||||
|     for _ in range(1, blocks): | ||||
|       layers.append(block(self.inplanes, planes, 1, None, groups, base_width)) | ||||
|  | ||||
|     return nn.Sequential(*layers) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = self.conv(x) | ||||
|     x = self.maxpool(x) | ||||
|  | ||||
|     x = self.layer1(x) | ||||
|     x = self.layer2(x) | ||||
|     x = self.layer3(x) | ||||
|     x = self.layer4(x) | ||||
|  | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.fc(features) | ||||
|  | ||||
|     return features, logits | ||||
							
								
								
									
										101
									
								
								lib/models/MobileNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										101
									
								
								lib/models/MobileNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,101 @@ | ||||
| # MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018 | ||||
| from torch import nn | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     padding = (kernel_size - 1) // 2 | ||||
|     self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False) | ||||
|     self.bn   = nn.BatchNorm2d(out_planes) | ||||
|     self.relu = nn.ReLU6(inplace=True) | ||||
|    | ||||
|   def forward(self, x): | ||||
|     out = self.conv( x ) | ||||
|     out = self.bn  ( out ) | ||||
|     out = self.relu( out ) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class InvertedResidual(nn.Module): | ||||
|   def __init__(self, inp, oup, stride, expand_ratio): | ||||
|     super(InvertedResidual, self).__init__() | ||||
|     self.stride = stride | ||||
|     assert stride in [1, 2] | ||||
|  | ||||
|     hidden_dim = int(round(inp * expand_ratio)) | ||||
|     self.use_res_connect = self.stride == 1 and inp == oup | ||||
|  | ||||
|     layers = [] | ||||
|     if expand_ratio != 1: | ||||
|       # pw | ||||
|       layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) | ||||
|     layers.extend([ | ||||
|       # dw | ||||
|       ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), | ||||
|       # pw-linear | ||||
|       nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | ||||
|       nn.BatchNorm2d(oup), | ||||
|     ]) | ||||
|     self.conv = nn.Sequential(*layers) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     if self.use_res_connect: | ||||
|       return x + self.conv(x) | ||||
|     else: | ||||
|       return self.conv(x) | ||||
|  | ||||
|  | ||||
| class MobileNetV2(nn.Module): | ||||
|   def __init__(self, num_classes, width_mult, input_channel, last_channel, block_name, dropout): | ||||
|     super(MobileNetV2, self).__init__() | ||||
|     if block_name == 'InvertedResidual': | ||||
|       block = InvertedResidual | ||||
|     else: | ||||
|       raise ValueError('invalid block name : {:}'.format(block_name)) | ||||
|     inverted_residual_setting = [ | ||||
|       # t, c,  n, s | ||||
|       [1, 16 , 1, 1], | ||||
|       [6, 24 , 2, 2], | ||||
|       [6, 32 , 3, 2], | ||||
|       [6, 64 , 4, 2], | ||||
|       [6, 96 , 3, 1], | ||||
|       [6, 160, 3, 2], | ||||
|       [6, 320, 1, 1], | ||||
|     ] | ||||
|  | ||||
|     # building first layer | ||||
|     input_channel = int(input_channel * width_mult) | ||||
|     self.last_channel = int(last_channel * max(1.0, width_mult)) | ||||
|     features = [ConvBNReLU(3, input_channel, stride=2)] | ||||
|     # building inverted residual blocks | ||||
|     for t, c, n, s in inverted_residual_setting: | ||||
|       output_channel = int(c * width_mult) | ||||
|       for i in range(n): | ||||
|         stride = s if i == 0 else 1 | ||||
|         features.append(block(input_channel, output_channel, stride, expand_ratio=t)) | ||||
|         input_channel = output_channel | ||||
|     # building last several layers | ||||
|     features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) | ||||
|     # make it nn.Sequential | ||||
|     self.features = nn.Sequential(*features) | ||||
|  | ||||
|     # building classifier | ||||
|     self.classifier = nn.Sequential( | ||||
|       nn.Dropout(dropout), | ||||
|       nn.Linear(self.last_channel, num_classes), | ||||
|     ) | ||||
|     self.message = 'MobileNetV2 : width_mult={:}, in-C={:}, last-C={:}, block={:}, dropout={:}'.format(width_mult, input_channel, last_channel, block_name, dropout) | ||||
|  | ||||
|     # weight initialization | ||||
|     self.apply( initialize_resnet ) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     features = self.features(inputs) | ||||
|     vectors  = features.mean([2, 3]) | ||||
|     predicts = self.classifier(vectors) | ||||
|     return features, predicts | ||||
							
								
								
									
										31
									
								
								lib/models/SharedUtils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										31
									
								
								lib/models/SharedUtils.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,31 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def additive_func(A, B): | ||||
|   assert A.dim() == B.dim() and A.size(0) == B.size(0), '{:} vs {:}'.format(A.size(), B.size()) | ||||
|   C = min(A.size(1), B.size(1)) | ||||
|   if A.size(1) == B.size(1): | ||||
|     return A + B | ||||
|   elif A.size(1) < B.size(1): | ||||
|     out = B.clone() | ||||
|     out[:,:C] += A | ||||
|     return out | ||||
|   else: | ||||
|     out = A.clone() | ||||
|     out[:,:C] += B | ||||
|     return out | ||||
|  | ||||
|  | ||||
| def change_key(key, value): | ||||
|   def func(m): | ||||
|     if hasattr(m, key): | ||||
|       setattr(m, key, value) | ||||
|   return func | ||||
|  | ||||
|  | ||||
| def parse_channel_info(xstring): | ||||
|   blocks = xstring.split(' ') | ||||
|   blocks = [x.split('-') for x in blocks] | ||||
|   blocks = [[int(_) for _ in x] for x in blocks] | ||||
|   return blocks | ||||
							
								
								
									
										133
									
								
								lib/models/ShuffleNetV2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										133
									
								
								lib/models/ShuffleNetV2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,133 @@ | ||||
| import functools | ||||
|  | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
| __all__ = ['ShuffleNetV2'] | ||||
|  | ||||
|  | ||||
| def channel_shuffle(x, groups): | ||||
|   batchsize, num_channels, height, width = x.data.size() | ||||
|   channels_per_group = num_channels // groups | ||||
|  | ||||
|   # reshape | ||||
|   x = x.view(batchsize, groups, channels_per_group, height, width) | ||||
|  | ||||
|   x = torch.transpose(x, 1, 2).contiguous() | ||||
|  | ||||
|   # flatten | ||||
|   x = x.view(batchsize, -1, height, width) | ||||
|  | ||||
|   return x | ||||
|  | ||||
|  | ||||
| class InvertedResidual(nn.Module): | ||||
|   def __init__(self, inp, oup, stride): | ||||
|     super(InvertedResidual, self).__init__() | ||||
|  | ||||
|     if not (1 <= stride <= 3): | ||||
|       raise ValueError('illegal stride value') | ||||
|     self.stride = stride | ||||
|  | ||||
|     branch_features = oup // 2 | ||||
|     assert (self.stride != 1) or (inp == branch_features << 1) | ||||
|  | ||||
|     pw_conv11 = functools.partial(nn.Conv2d, kernel_size=1, stride=1, padding=0, bias=False) | ||||
|     dw_conv33 = functools.partial(self.depthwise_conv, kernel_size=3, stride=self.stride, padding=1) | ||||
|  | ||||
|     if self.stride > 1: | ||||
|       self.branch1 = nn.Sequential( | ||||
|         dw_conv33(inp, inp), | ||||
|         nn.BatchNorm2d(inp), | ||||
|         pw_conv11(inp, branch_features), | ||||
|         nn.BatchNorm2d(branch_features), | ||||
|         nn.ReLU(inplace=True), | ||||
|       ) | ||||
|  | ||||
|     self.branch2 = nn.Sequential( | ||||
|       pw_conv11(inp if (self.stride > 1) else branch_features, branch_features), | ||||
|       nn.BatchNorm2d(branch_features), | ||||
|       nn.ReLU(inplace=True), | ||||
|       dw_conv33(branch_features, branch_features), | ||||
|       nn.BatchNorm2d(branch_features), | ||||
|       pw_conv11(branch_features, branch_features), | ||||
|       nn.BatchNorm2d(branch_features), | ||||
|       nn.ReLU(inplace=True), | ||||
|     ) | ||||
|  | ||||
|   @staticmethod | ||||
|   def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False): | ||||
|     return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     if self.stride == 1: | ||||
|       x1, x2 = x.chunk(2, dim=1) | ||||
|       out = torch.cat((x1, self.branch2(x2)), dim=1) | ||||
|     else: | ||||
|       out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) | ||||
|  | ||||
|     out = channel_shuffle(out, 2) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ShuffleNetV2(nn.Module): | ||||
|   def __init__(self, num_classes, stages): | ||||
|     super(ShuffleNetV2, self).__init__() | ||||
|  | ||||
|     self.stage_out_channels = stages | ||||
|     assert len(stages) == 5, 'invalid stages : {:}'.format(stages) | ||||
|     self.message = 'stages: ' + ' '.join([str(x) for x in stages]) | ||||
|  | ||||
|     input_channels = 3 | ||||
|     output_channels = self.stage_out_channels[0] | ||||
|     self.conv1 = nn.Sequential( | ||||
|       nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False), | ||||
|       nn.BatchNorm2d(output_channels), | ||||
|       nn.ReLU(inplace=True), | ||||
|     ) | ||||
|     input_channels = output_channels | ||||
|  | ||||
|     self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||||
|  | ||||
|     stage_names = ['stage{:}'.format(i) for i in [2, 3, 4]] | ||||
|     stage_repeats = [4, 8, 4] | ||||
|     for name, repeats, output_channels in zip( | ||||
|         stage_names, stage_repeats, self.stage_out_channels[1:]): | ||||
|       seq = [InvertedResidual(input_channels, output_channels, 2)] | ||||
|       for i in range(repeats - 1): | ||||
|         seq.append(InvertedResidual(output_channels, output_channels, 1)) | ||||
|       setattr(self, name, nn.Sequential(*seq)) | ||||
|       input_channels = output_channels | ||||
|  | ||||
|     output_channels = self.stage_out_channels[-1] | ||||
|     self.conv5 = nn.Sequential( | ||||
|       nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False), | ||||
|       nn.BatchNorm2d(output_channels), | ||||
|       nn.ReLU(inplace=True), | ||||
|     ) | ||||
|  | ||||
|     self.fc = nn.Linear(output_channels, num_classes) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     x = self.conv1( inputs ) | ||||
|     x = self.maxpool(x) | ||||
|     x = self.stage2(x) | ||||
|     x = self.stage3(x) | ||||
|     x = self.stage4(x) | ||||
|     x = self.conv5(x) | ||||
|     features = x.mean([2, 3])  # globalpool | ||||
|     predicts = self.fc(features) | ||||
|     return features, predicts | ||||
|  | ||||
|   #@staticmethod | ||||
|   #def _getStages(mult): | ||||
|   #  stages = { | ||||
|   #    '0.5': [24, 48,  96 , 192, 1024], | ||||
|   #    '1.0': [24, 116, 232, 464, 1024], | ||||
|   #    '1.5': [24, 176, 352, 704, 1024], | ||||
|   #    '2.0': [24, 244, 488, 976, 2048], | ||||
|   #  } | ||||
|   #  return stages[str(mult)] | ||||
							
								
								
									
										123
									
								
								lib/models/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										123
									
								
								lib/models/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,123 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import torch | ||||
| from os import path as osp | ||||
| # our modules | ||||
| from config_utils import dict2config | ||||
| from .SharedUtils import change_key | ||||
| from .clone_weights import init_from_model | ||||
|  | ||||
|  | ||||
| def get_cifar_models(config): | ||||
|   from .CifarResNet      import CifarResNet | ||||
|   from .CifarDenseNet    import DenseNet | ||||
|   from .CifarWideResNet  import CifarWideResNet | ||||
|    | ||||
|   super_type = getattr(config, 'super_type', 'basic') | ||||
|   if super_type == 'basic': | ||||
|     if config.arch == 'resnet': | ||||
|       return CifarResNet(config.module, config.depth, config.class_num, config.zero_init_residual) | ||||
|     elif config.arch == 'densenet': | ||||
|       return DenseNet(config.growthRate, config.depth, config.reduction, config.class_num, config.bottleneck) | ||||
|     elif config.arch == 'wideresnet': | ||||
|       return CifarWideResNet(config.depth, config.wide_factor, config.class_num, config.dropout) | ||||
|     else: | ||||
|       raise ValueError('invalid module type : {:}'.format(config.arch)) | ||||
|   elif super_type.startswith('infer'): | ||||
|     from .infers import InferWidthCifarResNet | ||||
|     from .infers import InferDepthCifarResNet | ||||
|     from .infers import InferCifarResNet | ||||
|     assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type) | ||||
|     infer_mode = super_type.split('-')[1] | ||||
|     if infer_mode == 'width': | ||||
|       return InferWidthCifarResNet(config.module, config.depth, config.xchannels, config.class_num, config.zero_init_residual) | ||||
|     elif infer_mode == 'depth': | ||||
|       return InferDepthCifarResNet(config.module, config.depth, config.xblocks, config.class_num, config.zero_init_residual) | ||||
|     elif infer_mode == 'shape': | ||||
|       return InferCifarResNet(config.module, config.depth, config.xblocks, config.xchannels, config.class_num, config.zero_init_residual) | ||||
|     else: | ||||
|       raise ValueError('invalid infer-mode : {:}'.format(infer_mode)) | ||||
|   else: | ||||
|     raise ValueError('invalid super-type : {:}'.format(super_type)) | ||||
|  | ||||
|  | ||||
| def get_imagenet_models(config): | ||||
|   super_type = getattr(config, 'super_type', 'basic') | ||||
|   if super_type == 'basic': | ||||
|     return get_imagenet_models_basic(config) | ||||
|   # NAS searched architecture | ||||
|   elif super_type.startswith('infer'): | ||||
|     assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type) | ||||
|     infer_mode = super_type.split('-')[1] | ||||
|     if infer_mode == 'shape': | ||||
|       from .infers import InferImagenetResNet | ||||
|       from .infers import InferMobileNetV2 | ||||
|       if config.arch == 'resnet': | ||||
|         return InferImagenetResNet(config.block_name, config.layers, config.xblocks, config.xchannels, config.deep_stem, config.class_num, config.zero_init_residual) | ||||
|       elif config.arch == "MobileNetV2": | ||||
|         return InferMobileNetV2(config.class_num, config.xchannels, config.xblocks, config.dropout) | ||||
|       else: | ||||
|         raise ValueError('invalid arch-mode : {:}'.format(config.arch)) | ||||
|     else: | ||||
|       raise ValueError('invalid infer-mode : {:}'.format(infer_mode)) | ||||
|   else: | ||||
|     raise ValueError('invalid super-type : {:}'.format(super_type)) | ||||
|  | ||||
|  | ||||
| def get_imagenet_models_basic(config): | ||||
|   from .ImagenetResNet import ResNet | ||||
|   from .MobileNet      import MobileNetV2 | ||||
|   from .ShuffleNetV2   import ShuffleNetV2 | ||||
|   if config.arch == 'resnet': | ||||
|     return ResNet(config.block_name, config.layers, config.deep_stem, config.class_num, config.zero_init_residual, config.groups, config.width_per_group) | ||||
|   elif config.arch == 'MobileNetV2': | ||||
|     return MobileNetV2(config.class_num, config.width_mult, config.input_channel, config.last_channel, config.block_name, config.dropout) | ||||
|   elif config.arch == 'ShuffleNetV2': | ||||
|     return ShuffleNetV2(config.class_num, config.stages) | ||||
|   else: | ||||
|     raise ValueError('invalid arch : {:}'.format( config.arch )) | ||||
|      | ||||
|  | ||||
| def obtain_model(config): | ||||
|   if config.dataset == 'cifar': | ||||
|     return get_cifar_models(config) | ||||
|   elif config.dataset == 'imagenet': | ||||
|     return get_imagenet_models(config) | ||||
|   else: | ||||
|     raise ValueError('invalid dataset in the model config : {:}'.format(config)) | ||||
|  | ||||
|  | ||||
| def obtain_search_model(config): | ||||
|   if config.dataset == 'cifar': | ||||
|     if config.arch == 'resnet': | ||||
|       from .searchs import SearchWidthCifarResNet | ||||
|       from .searchs import SearchDepthCifarResNet | ||||
|       from .searchs import SearchShapeCifarResNet | ||||
|       if config.search_mode == 'width': | ||||
|         return SearchWidthCifarResNet(config.module, config.depth, config.class_num) | ||||
|       elif config.search_mode == 'depth': | ||||
|         return SearchDepthCifarResNet(config.module, config.depth, config.class_num) | ||||
|       elif config.search_mode == 'shape': | ||||
|         return SearchShapeCifarResNet(config.module, config.depth, config.class_num) | ||||
|       else: raise ValueError('invalid search mode : {:}'.format(config.search_mode)) | ||||
|     else: | ||||
|       raise ValueError('invalid arch : {:} for dataset [{:}]'.format(config.arch, config.dataset)) | ||||
|   elif config.dataset == 'imagenet': | ||||
|     from .searchs import SearchShapeImagenetResNet | ||||
|     assert config.search_mode == 'shape', 'invalid search-mode : {:}'.format( config.search_mode ) | ||||
|     if config.arch == 'resnet': | ||||
|       return SearchShapeImagenetResNet(config.block_name, config.layers, config.deep_stem, config.class_num) | ||||
|     else: | ||||
|       raise ValueError('invalid model config : {:}'.format(config)) | ||||
|   else: | ||||
|     raise ValueError('invalid dataset in the model config : {:}'.format(config)) | ||||
|  | ||||
|  | ||||
| def load_net_from_checkpoint(checkpoint): | ||||
|   assert osp.isfile(checkpoint), 'checkpoint {:} does not exist'.format(checkpoint) | ||||
|   checkpoint   = torch.load(checkpoint) | ||||
|   model_config = dict2config(checkpoint['model-config'], None) | ||||
|   model        = obtain_model(model_config) | ||||
|   model.load_state_dict(checkpoint['base-model']) | ||||
|   return model | ||||
							
								
								
									
										62
									
								
								lib/models/clone_weights.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										62
									
								
								lib/models/clone_weights.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,62 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def copy_conv(module, init): | ||||
|   assert isinstance(module, nn.Conv2d), 'invalid module : {:}'.format(module) | ||||
|   assert isinstance(init  , nn.Conv2d), 'invalid module : {:}'.format(init) | ||||
|   new_i, new_o = module.in_channels, module.out_channels | ||||
|   module.weight.copy_( init.weight.detach()[:new_o, :new_i] ) | ||||
|   if module.bias is not None: | ||||
|     module.bias.copy_( init.bias.detach()[:new_o] ) | ||||
|  | ||||
| def copy_bn  (module, init): | ||||
|   assert isinstance(module, nn.BatchNorm2d), 'invalid module : {:}'.format(module) | ||||
|   assert isinstance(init  , nn.BatchNorm2d), 'invalid module : {:}'.format(init) | ||||
|   num_features = module.num_features | ||||
|   if module.weight is not None: | ||||
|     module.weight.copy_( init.weight.detach()[:num_features] ) | ||||
|   if module.bias is not None: | ||||
|     module.bias.copy_( init.bias.detach()[:num_features] ) | ||||
|   if module.running_mean is not None: | ||||
|     module.running_mean.copy_( init.running_mean.detach()[:num_features] ) | ||||
|   if module.running_var  is not None: | ||||
|     module.running_var.copy_( init.running_var.detach()[:num_features] ) | ||||
|  | ||||
| def copy_fc  (module, init): | ||||
|   assert isinstance(module, nn.Linear), 'invalid module : {:}'.format(module) | ||||
|   assert isinstance(init  , nn.Linear), 'invalid module : {:}'.format(init) | ||||
|   new_i, new_o = module.in_features, module.out_features | ||||
|   module.weight.copy_( init.weight.detach()[:new_o, :new_i] ) | ||||
|   if module.bias is not None: | ||||
|     module.bias.copy_( init.bias.detach()[:new_o] ) | ||||
|  | ||||
| def copy_base(module, init): | ||||
|   assert type(module).__name__ in ['ConvBNReLU', 'Downsample'], 'invalid module : {:}'.format(module) | ||||
|   assert type(  init).__name__ in ['ConvBNReLU', 'Downsample'], 'invalid module : {:}'.format(  init) | ||||
|   if module.conv is not None: | ||||
|     copy_conv(module.conv, init.conv) | ||||
|   if module.bn is not None: | ||||
|     copy_bn  (module.bn, init.bn) | ||||
|  | ||||
| def copy_basic(module, init): | ||||
|   copy_base(module.conv_a, init.conv_a) | ||||
|   copy_base(module.conv_b, init.conv_b) | ||||
|   if module.downsample is not None: | ||||
|     if init.downsample is not None: | ||||
|       copy_base(module.downsample, init.downsample) | ||||
|     #else: | ||||
|     # import pdb; pdb.set_trace() | ||||
|  | ||||
|  | ||||
| def init_from_model(network, init_model): | ||||
|   with torch.no_grad(): | ||||
|     copy_fc(network.classifier, init_model.classifier) | ||||
|     for base, target in zip(init_model.layers, network.layers): | ||||
|       assert type(base).__name__  == type(target).__name__, 'invalid type : {:} vs {:}'.format(base, target) | ||||
|       if type(base).__name__ == 'ConvBNReLU': | ||||
|         copy_base(target, base) | ||||
|       elif type(base).__name__ == 'ResNetBasicblock': | ||||
|         copy_basic(target, base) | ||||
|       else: | ||||
|         raise ValueError('unknown type name : {:}'.format( type(base).__name__ )) | ||||
							
								
								
									
										166
									
								
								lib/models/infers/InferCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										166
									
								
								lib/models/infers/InferCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,166 @@ | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|    | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     else       : self.bn  = None | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.bn  : out = self.bn( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|  | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   num_conv  = 2 | ||||
|   expansion = 1 | ||||
|   def __init__(self, iCs, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | ||||
|     assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs) | ||||
|      | ||||
|     self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     residual_in = iCs[0] | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|       residual_in = iCs[2] | ||||
|     elif iCs[0] != iCs[2]: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     #self.out_dim  = max(residual_in, iCs[2]) | ||||
|     self.out_dim  = iCs[2] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + basicblock | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, iCs, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | ||||
|     assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs) | ||||
|     self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     residual_in = iCs[0] | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False) | ||||
|       residual_in     = iCs[3] | ||||
|     elif iCs[0] != iCs[3]: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False) | ||||
|       residual_in     = iCs[3] | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     #self.out_dim = max(residual_in, iCs[3]) | ||||
|     self.out_dim = iCs[3] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + bottleneck | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class InferCifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, xblocks, xchannels, num_classes, zero_init_residual): | ||||
|     super(InferCifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|     assert len(xblocks) == 3, 'invalid xblocks : {:}'.format(xblocks) | ||||
|  | ||||
|     self.message     = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes = num_classes | ||||
|     self.xchannels   = xchannels | ||||
|     self.layers      = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     last_channel_idx = 1 | ||||
|     for stage in range(3): | ||||
|       for iL in range(layer_blocks): | ||||
|         num_conv = block.num_conv  | ||||
|         iCs      = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1] | ||||
|         stride   = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module   = block(iCs, stride) | ||||
|         last_channel_idx += num_conv | ||||
|         self.xchannels[last_channel_idx] = module.out_dim | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride) | ||||
|         if iL + 1 == xblocks[stage]: # reach the maximum depth | ||||
|           out_channel = module.out_dim | ||||
|           for iiL in range(iL+1, layer_blocks): | ||||
|             last_channel_idx += num_conv | ||||
|           self.xchannels[last_channel_idx] = module.out_dim | ||||
|           break | ||||
|    | ||||
|     self.avgpool    = nn.AvgPool2d(8) | ||||
|     self.classifier = nn.Linear(self.xchannels[-1], num_classes) | ||||
|      | ||||
|     self.apply(initialize_resnet) | ||||
|     if zero_init_residual: | ||||
|       for m in self.modules(): | ||||
|         if isinstance(m, ResNetBasicblock): | ||||
|           nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|         elif isinstance(m, ResNetBottleneck): | ||||
|           nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										149
									
								
								lib/models/infers/InferCifarResNet_depth.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										149
									
								
								lib/models/infers/InferCifarResNet_depth.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,149 @@ | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|    | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     else       : self.bn  = None | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.bn  : out = self.bn( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|  | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   num_conv  = 2 | ||||
|   expansion = 1 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|      | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim  = planes | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + basicblock | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim = planes*self.expansion | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + bottleneck | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class InferDepthCifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, xblocks, num_classes, zero_init_residual): | ||||
|     super(InferDepthCifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|     assert len(xblocks) == 3, 'invalid xblocks : {:}'.format(xblocks) | ||||
|  | ||||
|     self.message     = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes = num_classes | ||||
|     self.layers      = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     self.channels    = [16] | ||||
|     for stage in range(3): | ||||
|       for iL in range(layer_blocks): | ||||
|         iC       = self.channels[-1] | ||||
|         planes = 16 * (2**stage) | ||||
|         stride   = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module   = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, planes, module.out_dim, stride) | ||||
|         if iL + 1 == xblocks[stage]: # reach the maximum depth | ||||
|           break | ||||
|    | ||||
|     self.avgpool    = nn.AvgPool2d(8) | ||||
|     self.classifier = nn.Linear(self.channels[-1], num_classes) | ||||
|      | ||||
|     self.apply(initialize_resnet) | ||||
|     if zero_init_residual: | ||||
|       for m in self.modules(): | ||||
|         if isinstance(m, ResNetBasicblock): | ||||
|           nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|         elif isinstance(m, ResNetBottleneck): | ||||
|           nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										159
									
								
								lib/models/infers/InferCifarResNet_width.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										159
									
								
								lib/models/infers/InferCifarResNet_width.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,159 @@ | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|    | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     else       : self.bn  = None | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.bn  : out = self.bn( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|  | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   num_conv  = 2 | ||||
|   expansion = 1 | ||||
|   def __init__(self, iCs, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | ||||
|     assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs) | ||||
|      | ||||
|     self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     residual_in = iCs[0] | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|       residual_in = iCs[2] | ||||
|     elif iCs[0] != iCs[2]: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     #self.out_dim  = max(residual_in, iCs[2]) | ||||
|     self.out_dim  = iCs[2] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + basicblock | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, iCs, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | ||||
|     assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs) | ||||
|     self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     residual_in = iCs[0] | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False) | ||||
|       residual_in     = iCs[3] | ||||
|     elif iCs[0] != iCs[3]: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False) | ||||
|       residual_in     = iCs[3] | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     #self.out_dim = max(residual_in, iCs[3]) | ||||
|     self.out_dim = iCs[3] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + bottleneck | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class InferWidthCifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, xchannels, num_classes, zero_init_residual): | ||||
|     super(InferWidthCifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|  | ||||
|     self.message     = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes = num_classes | ||||
|     self.xchannels   = xchannels | ||||
|     self.layers      = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     last_channel_idx = 1 | ||||
|     for stage in range(3): | ||||
|       for iL in range(layer_blocks): | ||||
|         num_conv = block.num_conv  | ||||
|         iCs      = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1] | ||||
|         stride   = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module   = block(iCs, stride) | ||||
|         last_channel_idx += num_conv | ||||
|         self.xchannels[last_channel_idx] = module.out_dim | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride) | ||||
|    | ||||
|     self.avgpool    = nn.AvgPool2d(8) | ||||
|     self.classifier = nn.Linear(self.xchannels[-1], num_classes) | ||||
|      | ||||
|     self.apply(initialize_resnet) | ||||
|     if zero_init_residual: | ||||
|       for m in self.modules(): | ||||
|         if isinstance(m, ResNetBasicblock): | ||||
|           nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|         elif isinstance(m, ResNetBottleneck): | ||||
|           nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										169
									
								
								lib/models/infers/InferImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										169
									
								
								lib/models/infers/InferImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,169 @@ | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|    | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     else       : self.bn  = None | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.bn  : out = self.bn( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|  | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   num_conv  = 2 | ||||
|   expansion = 1 | ||||
|   def __init__(self, iCs, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | ||||
|     assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs) | ||||
|      | ||||
|     self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     residual_in = iCs[0] | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=True, has_relu=False) | ||||
|       residual_in = iCs[2] | ||||
|     elif iCs[0] != iCs[2]: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     #self.out_dim  = max(residual_in, iCs[2]) | ||||
|     self.out_dim  = iCs[2] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + basicblock | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, iCs, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs ) | ||||
|     assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs) | ||||
|     self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     residual_in = iCs[0] | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=True, has_relu=False) | ||||
|       residual_in     = iCs[3] | ||||
|     elif iCs[0] != iCs[3]: | ||||
|       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|       residual_in     = iCs[3] | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     #self.out_dim = max(residual_in, iCs[3]) | ||||
|     self.out_dim = iCs[3] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|  | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     out = residual + bottleneck | ||||
|     return F.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class InferImagenetResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, layers, xblocks, xchannels, deep_stem, num_classes, zero_init_residual): | ||||
|     super(InferImagenetResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'BasicBlock': | ||||
|       block = ResNetBasicblock | ||||
|     elif block_name == 'Bottleneck': | ||||
|       block = ResNetBottleneck | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|     assert len(xblocks) == len(layers), 'invalid layers : {:} vs xblocks : {:}'.format(layers, xblocks) | ||||
|  | ||||
|     self.message     = 'InferImagenetResNet : Depth : {:} -> {:}, Layers for each block : {:}'.format(sum(layers)*block.num_conv, sum(xblocks)*block.num_conv, xblocks) | ||||
|     self.num_classes = num_classes | ||||
|     self.xchannels   = xchannels | ||||
|     if not deep_stem: | ||||
|       self.layers      = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 7, 2, 3, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|       last_channel_idx = 1 | ||||
|     else: | ||||
|       self.layers      = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 2, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|                                          ,ConvBNReLU(xchannels[1], xchannels[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|       last_channel_idx = 2 | ||||
|     self.layers.append( nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) | ||||
|     for stage, layer_blocks in enumerate(layers): | ||||
|       for iL in range(layer_blocks): | ||||
|         num_conv = block.num_conv  | ||||
|         iCs      = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1] | ||||
|         stride   = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module   = block(iCs, stride) | ||||
|         last_channel_idx += num_conv | ||||
|         self.xchannels[last_channel_idx] = module.out_dim | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride) | ||||
|         if iL + 1 == xblocks[stage]: # reach the maximum depth | ||||
|           out_channel = module.out_dim | ||||
|           for iiL in range(iL+1, layer_blocks): | ||||
|             last_channel_idx += num_conv | ||||
|           self.xchannels[last_channel_idx] = module.out_dim | ||||
|           break | ||||
|     assert last_channel_idx + 1 == len(self.xchannels), '{:} vs {:}'.format(last_channel_idx, len(self.xchannels)) | ||||
|     self.avgpool    = nn.AdaptiveAvgPool2d((1,1)) | ||||
|     self.classifier = nn.Linear(self.xchannels[-1], num_classes) | ||||
|      | ||||
|     self.apply(initialize_resnet) | ||||
|     if zero_init_residual: | ||||
|       for m in self.modules(): | ||||
|         if isinstance(m, ResNetBasicblock): | ||||
|           nn.init.constant_(m.conv_b.bn.weight, 0) | ||||
|         elif isinstance(m, ResNetBottleneck): | ||||
|           nn.init.constant_(m.conv_1x4.bn.weight, 0) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										119
									
								
								lib/models/infers/InferMobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										119
									
								
								lib/models/infers/InferMobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,119 @@ | ||||
| # MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018 | ||||
| from torch import nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func, parse_channel_info | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   def __init__(self, in_planes, out_planes, kernel_size, stride, groups, has_bn=True, has_relu=True): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     padding = (kernel_size - 1) // 2 | ||||
|     self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False) | ||||
|     if has_bn: self.bn = nn.BatchNorm2d(out_planes) | ||||
|     else     : self.bn = None | ||||
|     if has_relu: self.relu = nn.ReLU6(inplace=True) | ||||
|     else       : self.relu = None | ||||
|    | ||||
|   def forward(self, x): | ||||
|     out = self.conv( x ) | ||||
|     if self.bn:   out = self.bn  ( out ) | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class InvertedResidual(nn.Module): | ||||
|   def __init__(self, channels, stride, expand_ratio, additive): | ||||
|     super(InvertedResidual, self).__init__() | ||||
|     self.stride = stride | ||||
|     assert stride in [1, 2], 'invalid stride : {:}'.format(stride) | ||||
|     assert len(channels) in [2, 3], 'invalid channels : {:}'.format(channels) | ||||
|  | ||||
|     if len(channels) == 2: | ||||
|       layers = [] | ||||
|     else: | ||||
|       layers = [ConvBNReLU(channels[0], channels[1], 1, 1, 1)] | ||||
|     layers.extend([ | ||||
|       # dw | ||||
|       ConvBNReLU(channels[-2], channels[-2], 3, stride, channels[-2]), | ||||
|       # pw-linear | ||||
|       ConvBNReLU(channels[-2], channels[-1], 1, 1, 1, True, False), | ||||
|     ]) | ||||
|     self.conv = nn.Sequential(*layers) | ||||
|     self.additive = additive | ||||
|     if self.additive and channels[0] != channels[-1]: | ||||
|       self.shortcut = ConvBNReLU(channels[0], channels[-1], 1, 1, 1, True, False) | ||||
|     else: | ||||
|       self.shortcut = None | ||||
|     self.out_dim  = channels[-1] | ||||
|  | ||||
|   def forward(self, x): | ||||
|     out = self.conv(x) | ||||
|     # if self.additive: return additive_func(out, x) | ||||
|     if self.shortcut: return out + self.shortcut(x) | ||||
|     else            : return out | ||||
|  | ||||
|  | ||||
| class InferMobileNetV2(nn.Module): | ||||
|   def __init__(self, num_classes, xchannels, xblocks, dropout): | ||||
|     super(InferMobileNetV2, self).__init__() | ||||
|     block = InvertedResidual | ||||
|     inverted_residual_setting = [ | ||||
|       # t, c,  n, s | ||||
|       [1, 16 , 1, 1], | ||||
|       [6, 24 , 2, 2], | ||||
|       [6, 32 , 3, 2], | ||||
|       [6, 64 , 4, 2], | ||||
|       [6, 96 , 3, 1], | ||||
|       [6, 160, 3, 2], | ||||
|       [6, 320, 1, 1], | ||||
|     ] | ||||
|     assert len(inverted_residual_setting) == len(xblocks), 'invalid number of layers : {:} vs {:}'.format(len(inverted_residual_setting), len(xblocks)) | ||||
|     for block_num, ir_setting in zip(xblocks, inverted_residual_setting): | ||||
|       assert block_num <= ir_setting[2], '{:} vs {:}'.format(block_num, ir_setting) | ||||
|     xchannels = parse_channel_info(xchannels) | ||||
|     #for i, chs in enumerate(xchannels): | ||||
|     #  if i > 0: assert chs[0] == xchannels[i-1][-1], 'Layer[{:}] is invalid {:} vs {:}'.format(i, xchannels[i-1], chs) | ||||
|     self.xchannels = xchannels | ||||
|     self.message     = 'InferMobileNetV2 : xblocks={:}'.format(xblocks) | ||||
|     # building first layer | ||||
|     features = [ConvBNReLU(xchannels[0][0], xchannels[0][1], 3, 2, 1)] | ||||
|     last_channel_idx = 1 | ||||
|  | ||||
|     # building inverted residual blocks | ||||
|     for stage, (t, c, n, s) in enumerate(inverted_residual_setting): | ||||
|       for i in range(n): | ||||
|         stride = s if i == 0 else 1 | ||||
|         additv = True if i > 0 else False | ||||
|         module = block(self.xchannels[last_channel_idx], stride, t, additv) | ||||
|         features.append(module) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, Cs={:}, stride={:}, expand={:}, original-C={:}".format(stage, i, n, len(features), self.xchannels[last_channel_idx], stride, t, c) | ||||
|         last_channel_idx += 1 | ||||
|         if i + 1 == xblocks[stage]: | ||||
|           out_channel = module.out_dim | ||||
|           for iiL in range(i+1, n): | ||||
|             last_channel_idx += 1 | ||||
|           self.xchannels[last_channel_idx][0] = module.out_dim | ||||
|           break | ||||
|     # building last several layers | ||||
|     features.append(ConvBNReLU(self.xchannels[last_channel_idx][0], self.xchannels[last_channel_idx][1], 1, 1, 1)) | ||||
|     assert last_channel_idx + 2 == len(self.xchannels), '{:} vs {:}'.format(last_channel_idx, len(self.xchannels)) | ||||
|     # make it nn.Sequential | ||||
|     self.features = nn.Sequential(*features) | ||||
|  | ||||
|     # building classifier | ||||
|     self.classifier = nn.Sequential( | ||||
|       nn.Dropout(dropout), | ||||
|       nn.Linear(self.xchannels[last_channel_idx][1], num_classes), | ||||
|     ) | ||||
|  | ||||
|     # weight initialization | ||||
|     self.apply( initialize_resnet ) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     features = self.features(inputs) | ||||
|     vectors  = features.mean([2, 3]) | ||||
|     predicts = self.classifier(vectors) | ||||
|     return features, predicts | ||||
							
								
								
									
										5
									
								
								lib/models/infers/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								lib/models/infers/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,5 @@ | ||||
| from .InferCifarResNet_width import InferWidthCifarResNet | ||||
| from .InferImagenetResNet    import InferImagenetResNet | ||||
| from .InferCifarResNet_depth import InferDepthCifarResNet | ||||
| from .InferCifarResNet       import InferCifarResNet | ||||
| from .InferMobileNetV2       import InferMobileNetV2 | ||||
							
								
								
									
										7
									
								
								lib/models/infers/shared_utils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										7
									
								
								lib/models/infers/shared_utils.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,7 @@ | ||||
| # Xuanyi Dong | ||||
|  | ||||
| def parse_channel_info(xstring): | ||||
|   blocks = xstring.split(' ') | ||||
|   blocks = [x.split('-') for x in blocks] | ||||
|   blocks = [[int(_) for _ in x] for x in blocks] | ||||
|   return blocks | ||||
							
								
								
									
										18
									
								
								lib/models/initialization.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										18
									
								
								lib/models/initialization.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,18 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def initialize_resnet(m): | ||||
|   if isinstance(m, nn.Conv2d): | ||||
|     nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | ||||
|     if m.bias is not None: | ||||
|       nn.init.constant_(m.bias, 0) | ||||
|   elif isinstance(m, nn.BatchNorm2d): | ||||
|     nn.init.constant_(m.weight, 1) | ||||
|     if m.bias is not None: | ||||
|       nn.init.constant_(m.bias, 0) | ||||
|   elif isinstance(m, nn.Linear): | ||||
|     nn.init.normal_(m.weight, 0, 0.01) | ||||
|     nn.init.constant_(m.bias, 0) | ||||
|  | ||||
|  | ||||
							
								
								
									
										502
									
								
								lib/models/searchs/SearchCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										502
									
								
								lib/models/searchs/SearchCifarResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,502 @@ | ||||
| import math, torch | ||||
| from collections import OrderedDict | ||||
| from bisect import bisect_right | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
| from .SoftSelect      import select2withP, ChannelWiseInter | ||||
| from .SoftSelect      import linear_forward | ||||
| from .SoftSelect      import get_width_choices | ||||
|  | ||||
|  | ||||
| def get_depth_choices(nDepth, return_num): | ||||
|   if nDepth == 2: | ||||
|     choices = (1, 2) | ||||
|   elif nDepth == 3: | ||||
|     choices = (1, 2, 3) | ||||
|   elif nDepth > 3: | ||||
|     choices = list(range(1, nDepth+1, 2)) | ||||
|     if choices[-1] < nDepth: choices.append(nDepth) | ||||
|   else: | ||||
|     raise ValueError('invalid nDepth : {:}'.format(nDepth)) | ||||
|   if return_num: return len(choices) | ||||
|   else         : return choices | ||||
|    | ||||
|  | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|   iC = conv.in_channels | ||||
|   fill_size = list(inputs.size()) | ||||
|   fill_size[1] = iC - fill_size[1] | ||||
|   filled  = torch.zeros(fill_size, device=inputs.device) | ||||
|   xinputs = torch.cat((inputs, filled), dim=1) | ||||
|   outputs = conv(xinputs) | ||||
|   selecteds = [outputs[:,:oC] for oC in choices] | ||||
|   return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     self.InShape  = None | ||||
|     self.OutShape = None | ||||
|     self.choices  = get_width_choices(nOut) | ||||
|     self.register_buffer('choices_tensor', torch.Tensor( self.choices )) | ||||
|  | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     #if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     #else       : self.bn  = None | ||||
|     self.has_bn = has_bn | ||||
|     self.BNs  = nn.ModuleList() | ||||
|     for i, _out in enumerate(self.choices): | ||||
|       self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|     self.in_dim   = nIn | ||||
|     self.out_dim  = nOut | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_flops(self, channels, check_range=True, divide=1): | ||||
|     iC, oC = channels | ||||
|     if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels) | ||||
|     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape) | ||||
|     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape) | ||||
|     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups) | ||||
|     all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|     flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|     if self.conv.bias is not None: flops += all_positions / divide | ||||
|     return flops | ||||
|  | ||||
|   def get_range(self): | ||||
|     return [self.choices] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|     index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|     probability = torch.squeeze(probability) | ||||
|     assert len(index) == 2, 'invalid length : {:}'.format(index) | ||||
|     # compute expected flop | ||||
|     #coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|     expected_outC = (self.choices_tensor * probability).sum() | ||||
|     expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     # convolutional layer | ||||
|     out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|     out_bns   = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|     # merge | ||||
|     out_channel = max([x.size(1) for x in out_bns]) | ||||
|     outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|     outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|     out  = outA * prob[0] + outB * prob[1] | ||||
|     #out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     return out, expected_outC, expected_flop | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.has_bn:out= self.BNs[-1]( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     if self.InShape is None: | ||||
|       self.InShape  = (inputs.size(-2), inputs.size(-1)) | ||||
|       self.OutShape = (out.size(-2)   , out.size(-1)) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   expansion = 1 | ||||
|   num_conv  = 2 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_a.get_range() + self.conv_b.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 3, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_a.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_b.get_flops([channels[1], channels[2]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_C = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 | ||||
|     out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC  , probability[0], indexes[0], probs[0]) ) | ||||
|     out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[1], indexes[1], probs[1]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_b) | ||||
|     return out, expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c]) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, basicblock) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes * self.expansion | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 4, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) | ||||
|     flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_D = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_D = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, bottleneck) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 | ||||
|     out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC    , probability[0], indexes[0], probs[0]) ) | ||||
|     out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) ) | ||||
|     out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[2], indexes[2], probs[2]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_1x4) | ||||
|     return out, expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c]) | ||||
|  | ||||
|  | ||||
|  | ||||
| class SearchShapeCifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, num_classes): | ||||
|     super(SearchShapeCifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|  | ||||
|     self.message      = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes  = num_classes | ||||
|     self.channels     = [16] | ||||
|     self.layers       = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     self.InShape      = None | ||||
|     self.depth_info   = OrderedDict() | ||||
|     self.depth_at_i   = OrderedDict() | ||||
|     for stage in range(3): | ||||
|       cur_block_choices = get_depth_choices(layer_blocks, False) | ||||
|       assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks) | ||||
|       self.message += "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(stage, cur_block_choices, layer_blocks) | ||||
|       block_choices, xstart = [], len(self.layers) | ||||
|       for iL in range(layer_blocks): | ||||
|         iC     = self.channels[-1] | ||||
|         planes = 16 * (2**stage) | ||||
|         stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||
|         # added for depth | ||||
|         layer_index = len(self.layers) - 1 | ||||
|         if iL + 1 in cur_block_choices: block_choices.append( layer_index ) | ||||
|         if iL + 1 == layer_blocks: | ||||
|           self.depth_info[layer_index] = {'choices': block_choices, | ||||
|                                           'stage'  : stage, | ||||
|                                           'xstart' : xstart} | ||||
|     self.depth_info_list = [] | ||||
|     for xend, info in self.depth_info.items(): | ||||
|       self.depth_info_list.append( (xend, info) ) | ||||
|       xstart, xstage = info['xstart'], info['stage'] | ||||
|       for ilayer in range(xstart, xend+1): | ||||
|         idx = bisect_right(info['choices'], ilayer-1) | ||||
|         self.depth_at_i[ilayer] = (xstage, idx) | ||||
|  | ||||
|     self.avgpool     = nn.AvgPool2d(8) | ||||
|     self.classifier  = nn.Linear(module.out_dim, num_classes) | ||||
|     self.InShape     = None | ||||
|     self.tau         = -1 | ||||
|     self.search_mode = 'basic' | ||||
|     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|      | ||||
|     # parameters for width | ||||
|     self.Ranges = [] | ||||
|     self.layer2indexRange = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       start_index = len(self.Ranges) | ||||
|       self.Ranges += layer.get_range() | ||||
|       self.layer2indexRange.append( (start_index, len(self.Ranges)) ) | ||||
|     assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth) | ||||
|  | ||||
|     self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None)))) | ||||
|     self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True)))) | ||||
|     nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|     nn.init.normal_(self.depth_attentions, 0, 0.01) | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def arch_parameters(self, LR=None): | ||||
|     if LR is None: | ||||
|       return [self.width_attentions, self.depth_attentions] | ||||
|     else: | ||||
|       return [ | ||||
|                {"params": self.width_attentions, "lr": LR}, | ||||
|                {"params": self.depth_attentions, "lr": LR}, | ||||
|              ] | ||||
|  | ||||
|   def base_parameters(self): | ||||
|     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) | ||||
|  | ||||
|   def get_flop(self, mode, config_dict, extra_info): | ||||
|     if config_dict is not None: config_dict = config_dict.copy() | ||||
|     # select channels  | ||||
|     channels = [3] | ||||
|     for i, weight in enumerate(self.width_attentions): | ||||
|       if mode == 'genotype': | ||||
|         with torch.no_grad(): | ||||
|           probe = nn.functional.softmax(weight, dim=0) | ||||
|           C = self.Ranges[i][ torch.argmax(probe).item() ] | ||||
|       elif mode == 'max': | ||||
|         C = self.Ranges[i][-1] | ||||
|       elif mode == 'fix': | ||||
|         C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||
|       elif mode == 'random': | ||||
|         assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info) | ||||
|         with torch.no_grad(): | ||||
|           prob = nn.functional.softmax(weight, dim=0) | ||||
|           approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||
|           for j in range(prob.size(0)): | ||||
|             prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2) | ||||
|           C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ] | ||||
|       else: | ||||
|         raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|       channels.append( C ) | ||||
|     # select depth | ||||
|     if mode == 'genotype': | ||||
|       with torch.no_grad(): | ||||
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | ||||
|     elif mode == 'max' or mode == 'fix': | ||||
|       choices = [depth_probs.size(1)-1 for _ in range(depth_probs.size(0))] | ||||
|     elif mode == 'random': | ||||
|       with torch.no_grad(): | ||||
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         choices = torch.multinomial(depth_probs, 1, False).cpu().tolist() | ||||
|     else: | ||||
|       raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|     selected_layers = [] | ||||
|     for choice, xvalue in zip(choices, self.depth_info_list): | ||||
|       xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1 | ||||
|       selected_layers.append(xtemp) | ||||
|     flop = 0 | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       s, e = self.layer2indexRange[i] | ||||
|       xchl = tuple( channels[s:e+1] ) | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         if xatti <= choices[xstagei]: # leave this depth | ||||
|           flop+= layer.get_flops(xchl) | ||||
|         else: | ||||
|           flop+= 0 # do not use this layer | ||||
|       else: | ||||
|         flop+= layer.get_flops(xchl) | ||||
|     # the last fc layer | ||||
|     flop += channels[-1] * self.classifier.out_features | ||||
|     if config_dict is None: | ||||
|       return flop / 1e6 | ||||
|     else: | ||||
|       config_dict['xchannels']  = channels | ||||
|       config_dict['xblocks']    = selected_layers | ||||
|       config_dict['super_type'] = 'infer-shape' | ||||
|       config_dict['estimated_FLOP'] = flop / 1e6 | ||||
|       return flop / 1e6, config_dict | ||||
|  | ||||
|   def get_arch_info(self): | ||||
|     string = "for depth and width, there are {:} + {:} attention probabilities.".format(len(self.depth_attentions), len(self.width_attentions)) | ||||
|     string+= '\n{:}'.format(self.depth_info) | ||||
|     discrepancy = [] | ||||
|     with torch.no_grad(): | ||||
|       for i, att in enumerate(self.depth_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:17s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|       string += '\n-----------------------------------------------' | ||||
|       for i, att in enumerate(self.width_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:52s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|     return string, discrepancy | ||||
|  | ||||
|   def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio) | ||||
|     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, inputs): | ||||
|     flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|     flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|     flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] ) | ||||
|     selected_widths, selected_width_probs = select2withP(self.width_attentions, self.tau) | ||||
|     selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | ||||
|     with torch.no_grad(): | ||||
|       selected_widths = selected_widths.cpu() | ||||
|  | ||||
|     x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|     feature_maps = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       selected_w_index = selected_widths     [last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       selected_w_probs = selected_width_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       layer_prob       = flop_width_probs    [last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) ) | ||||
|       feature_maps.append( x ) | ||||
|       last_channel_idx += layer.num_conv | ||||
|       if i in self.depth_info: # aggregate the information | ||||
|         choices = self.depth_info[i]['choices'] | ||||
|         xstagei = self.depth_info[i]['stage'] | ||||
|         #print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist())) | ||||
|         #for A, W in zip(choices, selected_depth_probs[xstagei]): | ||||
|         #  print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W)) | ||||
|         possible_tensors = [] | ||||
|         max_C = max( feature_maps[A].size(1) for A in choices ) | ||||
|         for tempi, A in enumerate(choices): | ||||
|           xtensor = ChannelWiseInter(feature_maps[A], max_C) | ||||
|           #drop_ratio = 1-(tempi+1.0)/len(choices) | ||||
|           #xtensor = drop_path(xtensor, drop_ratio) | ||||
|           possible_tensors.append( xtensor ) | ||||
|         weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) ) | ||||
|         x = weighted_sum | ||||
|          | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop | ||||
|       else: | ||||
|         x_expected_flop = expected_flop | ||||
|       flops.append( x_expected_flop ) | ||||
|     flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = linear_forward(features, self.classifier) | ||||
|     return logits, torch.stack( [sum(flops)] ) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										337
									
								
								lib/models/searchs/SearchCifarResNet_depth.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										337
									
								
								lib/models/searchs/SearchCifarResNet_depth.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,337 @@ | ||||
| import math, torch | ||||
| from collections import OrderedDict | ||||
| from bisect import bisect_right | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
| from .SoftSelect      import select2withP, ChannelWiseInter | ||||
| from .SoftSelect      import linear_forward | ||||
| from .SoftSelect      import get_width_choices | ||||
|  | ||||
|  | ||||
| def get_depth_choices(nDepth, return_num): | ||||
|   if nDepth == 2: | ||||
|     choices = (1, 2) | ||||
|   elif nDepth == 3: | ||||
|     choices = (1, 2, 3) | ||||
|   elif nDepth > 3: | ||||
|     choices = list(range(1, nDepth+1, 2)) | ||||
|     if choices[-1] < nDepth: choices.append(nDepth) | ||||
|   else: | ||||
|     raise ValueError('invalid nDepth : {:}'.format(nDepth)) | ||||
|   if return_num: return len(choices) | ||||
|   else         : return choices | ||||
|  | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     self.InShape  = None | ||||
|     self.OutShape = None | ||||
|     self.choices  = get_width_choices(nOut) | ||||
|     self.register_buffer('choices_tensor', torch.Tensor( self.choices )) | ||||
|  | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     else       : self.bn  = None | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=False) | ||||
|     else       : self.relu = None | ||||
|     self.in_dim   = nIn | ||||
|     self.out_dim  = nOut | ||||
|  | ||||
|   def get_flops(self, divide=1): | ||||
|     iC, oC = self.in_dim, self.out_dim | ||||
|     assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels) | ||||
|     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape) | ||||
|     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape) | ||||
|     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups) | ||||
|     all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|     flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|     if self.conv.bias is not None: flops += all_positions / divide | ||||
|     return flops | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.bn  : out = self.bn( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     if self.InShape is None: | ||||
|       self.InShape  = (inputs.size(-2), inputs.size(-1)) | ||||
|       self.OutShape = (out.size(-2)   , out.size(-1)) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   expansion = 1 | ||||
|   num_conv  = 2 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_flops(self, divide=1): | ||||
|     flop_A = self.conv_a.get_flops(divide) | ||||
|     flop_B = self.conv_b.get_flops(divide) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_C = self.downsample.get_flops(divide) | ||||
|     else: | ||||
|       flop_C = 0 | ||||
|     return flop_A + flop_B + flop_C | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, basicblock) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes * self.expansion | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range() | ||||
|  | ||||
|   def get_flops(self, divide): | ||||
|     flop_A = self.conv_1x1.get_flops(divide) | ||||
|     flop_B = self.conv_3x3.get_flops(divide) | ||||
|     flop_C = self.conv_1x4.get_flops(divide) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_D = self.downsample.get_flops(divide) | ||||
|     else: | ||||
|       flop_D = 0 | ||||
|     return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, bottleneck) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
| class SearchDepthCifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, num_classes): | ||||
|     super(SearchDepthCifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|  | ||||
|     self.message      = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes  = num_classes | ||||
|     self.channels     = [16] | ||||
|     self.layers       = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     self.InShape      = None | ||||
|     self.depth_info   = OrderedDict() | ||||
|     self.depth_at_i   = OrderedDict() | ||||
|     for stage in range(3): | ||||
|       cur_block_choices = get_depth_choices(layer_blocks, False) | ||||
|       assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks) | ||||
|       self.message += "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(stage, cur_block_choices, layer_blocks) | ||||
|       block_choices, xstart = [], len(self.layers) | ||||
|       for iL in range(layer_blocks): | ||||
|         iC     = self.channels[-1] | ||||
|         planes = 16 * (2**stage) | ||||
|         stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||
|         # added for depth | ||||
|         layer_index = len(self.layers) - 1 | ||||
|         if iL + 1 in cur_block_choices: block_choices.append( layer_index ) | ||||
|         if iL + 1 == layer_blocks: | ||||
|           self.depth_info[layer_index] = {'choices': block_choices, | ||||
|                                           'stage'  : stage, | ||||
|                                           'xstart' : xstart} | ||||
|     self.depth_info_list = [] | ||||
|     for xend, info in self.depth_info.items(): | ||||
|       self.depth_info_list.append( (xend, info) ) | ||||
|       xstart, xstage = info['xstart'], info['stage'] | ||||
|       for ilayer in range(xstart, xend+1): | ||||
|         idx = bisect_right(info['choices'], ilayer-1) | ||||
|         self.depth_at_i[ilayer] = (xstage, idx) | ||||
|  | ||||
|     self.avgpool     = nn.AvgPool2d(8) | ||||
|     self.classifier  = nn.Linear(module.out_dim, num_classes) | ||||
|     self.InShape     = None | ||||
|     self.tau         = -1 | ||||
|     self.search_mode = 'basic' | ||||
|     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|      | ||||
|  | ||||
|     self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True)))) | ||||
|     nn.init.normal_(self.depth_attentions, 0, 0.01) | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def arch_parameters(self): | ||||
|     return [self.depth_attentions] | ||||
|  | ||||
|   def base_parameters(self): | ||||
|     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) | ||||
|  | ||||
|   def get_flop(self, mode, config_dict, extra_info): | ||||
|     if config_dict is not None: config_dict = config_dict.copy() | ||||
|     # select depth | ||||
|     if mode == 'genotype': | ||||
|       with torch.no_grad(): | ||||
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | ||||
|     elif mode == 'max': | ||||
|       choices = [depth_probs.size(1)-1 for _ in range(depth_probs.size(0))] | ||||
|     elif mode == 'random': | ||||
|       with torch.no_grad(): | ||||
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         choices = torch.multinomial(depth_probs, 1, False).cpu().tolist() | ||||
|     else: | ||||
|       raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|     selected_layers = [] | ||||
|     for choice, xvalue in zip(choices, self.depth_info_list): | ||||
|       xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1 | ||||
|       selected_layers.append(xtemp) | ||||
|     flop = 0 | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         if xatti <= choices[xstagei]: # leave this depth | ||||
|           flop+= layer.get_flops() | ||||
|         else: | ||||
|           flop+= 0 # do not use this layer | ||||
|       else: | ||||
|         flop+= layer.get_flops() | ||||
|     # the last fc layer | ||||
|     flop += self.classifier.in_features * self.classifier.out_features | ||||
|     if config_dict is None: | ||||
|       return flop / 1e6 | ||||
|     else: | ||||
|       config_dict['xblocks']    = selected_layers | ||||
|       config_dict['super_type'] = 'infer-depth' | ||||
|       config_dict['estimated_FLOP'] = flop / 1e6 | ||||
|       return flop / 1e6, config_dict | ||||
|  | ||||
|   def get_arch_info(self): | ||||
|     string = "for depth, there are {:} attention probabilities.".format(len(self.depth_attentions)) | ||||
|     string+= '\n{:}'.format(self.depth_info) | ||||
|     discrepancy = [] | ||||
|     with torch.no_grad(): | ||||
|       for i, att in enumerate(self.depth_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:17s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|     return string, discrepancy | ||||
|  | ||||
|   def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio) | ||||
|     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, inputs): | ||||
|     flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|     flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] ) | ||||
|     selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | ||||
|  | ||||
|     x, flops = inputs, [] | ||||
|     feature_maps = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       layer_i = layer( x ) | ||||
|       feature_maps.append( layer_i ) | ||||
|       if i in self.depth_info: # aggregate the information | ||||
|         choices = self.depth_info[i]['choices'] | ||||
|         xstagei = self.depth_info[i]['stage'] | ||||
|         possible_tensors = [] | ||||
|         for tempi, A in enumerate(choices): | ||||
|           xtensor = feature_maps[A] | ||||
|           possible_tensors.append( xtensor ) | ||||
|         weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) ) | ||||
|         x = weighted_sum | ||||
|       else: | ||||
|         x = layer_i | ||||
|         | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         #print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6))) | ||||
|         x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops(1e6) | ||||
|       else: | ||||
|         x_expected_flop = layer.get_flops(1e6) | ||||
|       flops.append( x_expected_flop ) | ||||
|     flops.append( (self.classifier.in_features * self.classifier.out_features*1.0/1e6) ) | ||||
|  | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = linear_forward(features, self.classifier) | ||||
|     return logits, torch.stack( [sum(flops)] ) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										391
									
								
								lib/models/searchs/SearchCifarResNet_width.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										391
									
								
								lib/models/searchs/SearchCifarResNet_width.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,391 @@ | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
| from .SoftSelect      import select2withP, ChannelWiseInter | ||||
| from .SoftSelect      import linear_forward | ||||
| from .SoftSelect      import get_width_choices as get_choices | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|   iC = conv.in_channels | ||||
|   fill_size = list(inputs.size()) | ||||
|   fill_size[1] = iC - fill_size[1] | ||||
|   filled  = torch.zeros(fill_size, device=inputs.device) | ||||
|   xinputs = torch.cat((inputs, filled), dim=1) | ||||
|   outputs = conv(xinputs) | ||||
|   selecteds = [outputs[:,:oC] for oC in choices] | ||||
|   return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     self.InShape  = None | ||||
|     self.OutShape = None | ||||
|     self.choices  = get_choices(nOut) | ||||
|     self.register_buffer('choices_tensor', torch.Tensor( self.choices )) | ||||
|  | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     #if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     #else       : self.bn  = None | ||||
|     self.has_bn = has_bn | ||||
|     self.BNs  = nn.ModuleList() | ||||
|     for i, _out in enumerate(self.choices): | ||||
|       self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|     self.in_dim   = nIn | ||||
|     self.out_dim  = nOut | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_flops(self, channels, check_range=True, divide=1): | ||||
|     iC, oC = channels | ||||
|     if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels) | ||||
|     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape) | ||||
|     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape) | ||||
|     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups) | ||||
|     all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|     flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|     if self.conv.bias is not None: flops += all_positions / divide | ||||
|     return flops | ||||
|  | ||||
|   def get_range(self): | ||||
|     return [self.choices] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|     index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|     probability = torch.squeeze(probability) | ||||
|     assert len(index) == 2, 'invalid length : {:}'.format(index) | ||||
|     # compute expected flop | ||||
|     #coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|     expected_outC = (self.choices_tensor * probability).sum() | ||||
|     expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     # convolutional layer | ||||
|     out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|     out_bns   = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|     # merge | ||||
|     out_channel = max([x.size(1) for x in out_bns]) | ||||
|     outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|     outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|     out  = outA * prob[0] + outB * prob[1] | ||||
|     #out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     return out, expected_outC, expected_flop | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.has_bn:out= self.BNs[-1]( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     if self.InShape is None: | ||||
|       self.InShape  = (inputs.size(-2), inputs.size(-1)) | ||||
|       self.OutShape = (out.size(-2)   , out.size(-1)) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   expansion = 1 | ||||
|   num_conv  = 2 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_a.get_range() + self.conv_b.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 3, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_a.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_b.get_flops([channels[1], channels[2]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_C = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 | ||||
|     out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC  , probability[0], indexes[0], probs[0]) ) | ||||
|     out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[1], indexes[1], probs[1]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_b) | ||||
|     return out, expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c]) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, basicblock) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes * self.expansion | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 4, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) | ||||
|     flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_D = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_D = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, bottleneck) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 | ||||
|     out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC    , probability[0], indexes[0], probs[0]) ) | ||||
|     out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) ) | ||||
|     out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[2], indexes[2], probs[2]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_1x4) | ||||
|     return out, expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c]) | ||||
|  | ||||
|  | ||||
|  | ||||
| class SearchWidthCifarResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, depth, num_classes): | ||||
|     super(SearchWidthCifarResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'ResNetBasicblock': | ||||
|       block = ResNetBasicblock | ||||
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | ||||
|       layer_blocks = (depth - 2) // 6 | ||||
|     elif block_name == 'ResNetBottleneck': | ||||
|       block = ResNetBottleneck | ||||
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164' | ||||
|       layer_blocks = (depth - 2) // 9 | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|  | ||||
|     self.message     = 'SearchWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||
|     self.num_classes = num_classes | ||||
|     self.channels    = [16] | ||||
|     self.layers      = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||
|     self.InShape     = None | ||||
|     for stage in range(3): | ||||
|       for iL in range(layer_blocks): | ||||
|         iC     = self.channels[-1] | ||||
|         planes = 16 * (2**stage) | ||||
|         stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||
|    | ||||
|     self.avgpool     = nn.AvgPool2d(8) | ||||
|     self.classifier  = nn.Linear(module.out_dim, num_classes) | ||||
|     self.InShape     = None | ||||
|     self.tau         = -1 | ||||
|     self.search_mode = 'basic' | ||||
|     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|      | ||||
|     # parameters for width | ||||
|     self.Ranges = [] | ||||
|     self.layer2indexRange = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       start_index = len(self.Ranges) | ||||
|       self.Ranges += layer.get_range() | ||||
|       self.layer2indexRange.append( (start_index, len(self.Ranges)) ) | ||||
|     assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth) | ||||
|  | ||||
|     self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None)))) | ||||
|     nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def arch_parameters(self): | ||||
|     return [self.width_attentions] | ||||
|  | ||||
|   def base_parameters(self): | ||||
|     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) | ||||
|  | ||||
|   def get_flop(self, mode, config_dict, extra_info): | ||||
|     if config_dict is not None: config_dict = config_dict.copy() | ||||
|     #weights = [F.softmax(x, dim=0) for x in self.width_attentions] | ||||
|     channels = [3] | ||||
|     for i, weight in enumerate(self.width_attentions): | ||||
|       if mode == 'genotype': | ||||
|         with torch.no_grad(): | ||||
|           probe = nn.functional.softmax(weight, dim=0) | ||||
|           C = self.Ranges[i][ torch.argmax(probe).item() ] | ||||
|       elif mode == 'max': | ||||
|         C = self.Ranges[i][-1] | ||||
|       elif mode == 'fix': | ||||
|         C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||
|       elif mode == 'random': | ||||
|         assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info) | ||||
|         with torch.no_grad(): | ||||
|           prob = nn.functional.softmax(weight, dim=0) | ||||
|           approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||
|           for j in range(prob.size(0)): | ||||
|             prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2) | ||||
|           C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ] | ||||
|       else: | ||||
|         raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|       channels.append( C ) | ||||
|     flop = 0 | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       s, e = self.layer2indexRange[i] | ||||
|       xchl = tuple( channels[s:e+1] ) | ||||
|       flop+= layer.get_flops(xchl) | ||||
|     # the last fc layer | ||||
|     flop += channels[-1] * self.classifier.out_features | ||||
|     if config_dict is None: | ||||
|       return flop / 1e6 | ||||
|     else: | ||||
|       config_dict['xchannels']  = channels | ||||
|       config_dict['super_type'] = 'infer-width' | ||||
|       config_dict['estimated_FLOP'] = flop / 1e6 | ||||
|       return flop / 1e6, config_dict | ||||
|  | ||||
|   def get_arch_info(self): | ||||
|     string = "for width, there are {:} attention probabilities.".format(len(self.width_attentions)) | ||||
|     discrepancy = [] | ||||
|     with torch.no_grad(): | ||||
|       for i, att in enumerate(self.width_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:52s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|     return string, discrepancy | ||||
|  | ||||
|   def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio) | ||||
|     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, inputs): | ||||
|     flop_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|     selected_widths, selected_probs = select2withP(self.width_attentions, self.tau) | ||||
|     with torch.no_grad(): | ||||
|       selected_widths = selected_widths.cpu() | ||||
|  | ||||
|     x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       selected_w_index = selected_widths[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       selected_w_probs = selected_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       layer_prob       = flop_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) ) | ||||
|       last_channel_idx += layer.num_conv | ||||
|       flops.append( expected_flop ) | ||||
|     flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = linear_forward(features, self.classifier) | ||||
|     return logits, torch.stack( [sum(flops)] ) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										483
									
								
								lib/models/searchs/SearchImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										483
									
								
								lib/models/searchs/SearchImagenetResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,483 @@ | ||||
| import math, torch | ||||
| from collections import OrderedDict | ||||
| from bisect import bisect_right | ||||
| import torch.nn as nn | ||||
| from ..initialization import initialize_resnet | ||||
| from ..SharedUtils    import additive_func | ||||
| from .SoftSelect      import select2withP, ChannelWiseInter | ||||
| from .SoftSelect      import linear_forward | ||||
| from .SoftSelect      import get_width_choices | ||||
|  | ||||
|  | ||||
| def get_depth_choices(layers): | ||||
|   min_depth = min(layers) | ||||
|   info = {'num': min_depth} | ||||
|   for i, depth in enumerate(layers): | ||||
|     choices = [] | ||||
|     for j in range(1, min_depth+1): | ||||
|       choices.append( int( float(depth)*j/min_depth ) ) | ||||
|     info[i] = choices | ||||
|   return info | ||||
|  | ||||
|  | ||||
| def conv_forward(inputs, conv, choices): | ||||
|   iC = conv.in_channels | ||||
|   fill_size = list(inputs.size()) | ||||
|   fill_size[1] = iC - fill_size[1] | ||||
|   filled  = torch.zeros(fill_size, device=inputs.device) | ||||
|   xinputs = torch.cat((inputs, filled), dim=1) | ||||
|   outputs = conv(xinputs) | ||||
|   selecteds = [outputs[:,:oC] for oC in choices] | ||||
|   return selecteds | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   num_conv  = 1 | ||||
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu, last_max_pool=False): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     self.InShape  = None | ||||
|     self.OutShape = None | ||||
|     self.choices  = get_width_choices(nOut) | ||||
|     self.register_buffer('choices_tensor', torch.Tensor( self.choices )) | ||||
|  | ||||
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||
|     else       : self.avg = None | ||||
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||
|     #if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||
|     #else       : self.bn  = None | ||||
|     self.has_bn = has_bn | ||||
|     self.BNs  = nn.ModuleList() | ||||
|     for i, _out in enumerate(self.choices): | ||||
|       self.BNs.append(nn.BatchNorm2d(_out)) | ||||
|     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||
|     else       : self.relu = None | ||||
|    | ||||
|     if last_max_pool: self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||||
|     else            : self.maxpool = None | ||||
|     self.in_dim   = nIn | ||||
|     self.out_dim  = nOut | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_flops(self, channels, check_range=True, divide=1): | ||||
|     iC, oC = channels | ||||
|     if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels) | ||||
|     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape) | ||||
|     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape) | ||||
|     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||
|     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups) | ||||
|     all_positions = self.OutShape[0] * self.OutShape[1] | ||||
|     flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||
|     if self.conv.bias is not None: flops += all_positions / divide | ||||
|     return flops | ||||
|  | ||||
|   def get_range(self): | ||||
|     return [self.choices] | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, index, prob = tuple_inputs | ||||
|     index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||
|     probability = torch.squeeze(probability) | ||||
|     assert len(index) == 2, 'invalid length : {:}'.format(index) | ||||
|     # compute expected flop | ||||
|     #coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||
|     expected_outC = (self.choices_tensor * probability).sum() | ||||
|     expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     # convolutional layer | ||||
|     out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||
|     out_bns   = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||
|     # merge | ||||
|     out_channel = max([x.size(1) for x in out_bns]) | ||||
|     outA = ChannelWiseInter(out_bns[0], out_channel) | ||||
|     outB = ChannelWiseInter(out_bns[1], out_channel) | ||||
|     out  = outA * prob[0] + outB * prob[1] | ||||
|     #out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||
|  | ||||
|     if self.relu   : out = self.relu( out ) | ||||
|     if self.maxpool: out = self.maxpool(out) | ||||
|     return out, expected_outC, expected_flop | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.avg : out = self.avg( inputs ) | ||||
|     else        : out = inputs | ||||
|     conv = self.conv( out ) | ||||
|     if self.has_bn:out= self.BNs[-1]( conv ) | ||||
|     else        : out = conv | ||||
|     if self.relu: out = self.relu( out ) | ||||
|     else        : out = out | ||||
|     if self.InShape is None: | ||||
|       self.InShape  = (inputs.size(-2), inputs.size(-1)) | ||||
|       self.OutShape = (out.size(-2)   , out.size(-1)) | ||||
|     if self.maxpool: out = self.maxpool(out) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(nn.Module): | ||||
|   expansion = 1 | ||||
|   num_conv  = 2 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_b = ConvBNReLU(  planes, planes, 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=True, has_relu=False) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True, has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_a.get_range() + self.conv_b.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 3, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_a.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_b.get_flops([channels[1], channels[2]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_C = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 | ||||
|     #import pdb; pdb.set_trace() | ||||
|     out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC  , probability[0], indexes[0], probs[0]) ) | ||||
|     out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[1], indexes[1], probs[1]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_b) | ||||
|     return out, expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c]) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     basicblock = self.conv_a(inputs) | ||||
|     basicblock = self.conv_b(basicblock) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, basicblock) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|  | ||||
|  | ||||
| class ResNetBottleneck(nn.Module): | ||||
|   expansion = 4 | ||||
|   num_conv  = 3 | ||||
|   def __init__(self, inplanes, planes, stride): | ||||
|     super(ResNetBottleneck, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_1x1 = ConvBNReLU(inplanes, planes, 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_3x3 = ConvBNReLU(  planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|     self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False) | ||||
|     if stride == 2: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=True, has_relu=False) | ||||
|     elif inplanes != planes*self.expansion: | ||||
|       self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True, has_relu=False) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.out_dim     = planes * self.expansion | ||||
|     self.search_mode = 'basic' | ||||
|  | ||||
|   def get_range(self): | ||||
|     return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range() | ||||
|  | ||||
|   def get_flops(self, channels): | ||||
|     assert len(channels) == 4, 'invalid channels : {:}'.format(channels) | ||||
|     flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) | ||||
|     flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) | ||||
|     flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) | ||||
|     if hasattr(self.downsample, 'get_flops'): | ||||
|       flop_D = self.downsample.get_flops([channels[0], channels[-1]]) | ||||
|     else: | ||||
|       flop_D = 0 | ||||
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||
|       flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1] | ||||
|     return flop_A + flop_B + flop_C + flop_D | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     bottleneck = self.conv_1x1(inputs) | ||||
|     bottleneck = self.conv_3x3(bottleneck) | ||||
|     bottleneck = self.conv_1x4(bottleneck) | ||||
|     if self.downsample is not None: residual = self.downsample(inputs) | ||||
|     else                          : residual = inputs | ||||
|     out = additive_func(residual, bottleneck) | ||||
|     return nn.functional.relu(out, inplace=True) | ||||
|  | ||||
|   def search_forward(self, tuple_inputs): | ||||
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||
|     assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 | ||||
|     out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC    , probability[0], indexes[0], probs[0]) ) | ||||
|     out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) ) | ||||
|     out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) ) | ||||
|     if self.downsample is not None: | ||||
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[2], indexes[2], probs[2]) ) | ||||
|     else: | ||||
|       residual, expected_flop_c = inputs, 0 | ||||
|     out = additive_func(residual, out_1x4) | ||||
|     return out, expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c]) | ||||
|  | ||||
|  | ||||
|  | ||||
| class SearchShapeImagenetResNet(nn.Module): | ||||
|  | ||||
|   def __init__(self, block_name, layers, deep_stem, num_classes): | ||||
|     super(SearchShapeImagenetResNet, self).__init__() | ||||
|  | ||||
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model | ||||
|     if block_name == 'BasicBlock': | ||||
|       block = ResNetBasicblock | ||||
|     elif block_name == 'Bottleneck': | ||||
|       block = ResNetBottleneck | ||||
|     else: | ||||
|       raise ValueError('invalid block : {:}'.format(block_name)) | ||||
|      | ||||
|     self.message      = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(sum(layers)*block.num_conv, layers) | ||||
|     self.num_classes  = num_classes | ||||
|     if not deep_stem: | ||||
|       self.layers       = nn.ModuleList( [ ConvBNReLU(3, 64, 7, 2, 3, False, has_avg=False, has_bn=True, has_relu=True, last_max_pool=True) ] ) | ||||
|       self.channels     = [64] | ||||
|     else: | ||||
|       self.layers       = nn.ModuleList( [ ConvBNReLU(3, 32, 3, 2, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||
|                                           ,ConvBNReLU(32,64, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True, last_max_pool=True) ] ) | ||||
|       self.channels     = [32, 64] | ||||
|  | ||||
|     meta_depth_info   = get_depth_choices(layers) | ||||
|     self.InShape      = None | ||||
|     self.depth_info   = OrderedDict() | ||||
|     self.depth_at_i   = OrderedDict() | ||||
|     for stage, layer_blocks in enumerate(layers): | ||||
|       cur_block_choices = meta_depth_info[stage] | ||||
|       assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks) | ||||
|       block_choices, xstart = [], len(self.layers) | ||||
|       for iL in range(layer_blocks): | ||||
|         iC     = self.channels[-1] | ||||
|         planes = 64 * (2**stage) | ||||
|         stride = 2 if stage > 0 and iL == 0 else 1 | ||||
|         module = block(iC, planes, stride) | ||||
|         self.channels.append( module.out_dim ) | ||||
|         self.layers.append  ( module ) | ||||
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||
|         # added for depth | ||||
|         layer_index = len(self.layers) - 1 | ||||
|         if iL + 1 in cur_block_choices: block_choices.append( layer_index ) | ||||
|         if iL + 1 == layer_blocks: | ||||
|           self.depth_info[layer_index] = {'choices': block_choices, | ||||
|                                           'stage'  : stage, | ||||
|                                           'xstart' : xstart} | ||||
|     self.depth_info_list = [] | ||||
|     for xend, info in self.depth_info.items(): | ||||
|       self.depth_info_list.append( (xend, info) ) | ||||
|       xstart, xstage = info['xstart'], info['stage'] | ||||
|       for ilayer in range(xstart, xend+1): | ||||
|         idx = bisect_right(info['choices'], ilayer-1) | ||||
|         self.depth_at_i[ilayer] = (xstage, idx) | ||||
|  | ||||
|     self.avgpool     = nn.AdaptiveAvgPool2d((1,1)) | ||||
|     self.classifier  = nn.Linear(module.out_dim, num_classes) | ||||
|     self.InShape     = None | ||||
|     self.tau         = -1 | ||||
|     self.search_mode = 'basic' | ||||
|     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||
|      | ||||
|     # parameters for width | ||||
|     self.Ranges = [] | ||||
|     self.layer2indexRange = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       start_index = len(self.Ranges) | ||||
|       self.Ranges += layer.get_range() | ||||
|       self.layer2indexRange.append( (start_index, len(self.Ranges)) ) | ||||
|  | ||||
|     self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None)))) | ||||
|     self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(len(layers), meta_depth_info['num']))) | ||||
|     nn.init.normal_(self.width_attentions, 0, 0.01) | ||||
|     nn.init.normal_(self.depth_attentions, 0, 0.01) | ||||
|     self.apply(initialize_resnet) | ||||
|  | ||||
|   def arch_parameters(self, LR=None): | ||||
|     if LR is None: | ||||
|       return [self.width_attentions, self.depth_attentions] | ||||
|     else: | ||||
|       return [ | ||||
|                {"params": self.width_attentions, "lr": LR}, | ||||
|                {"params": self.depth_attentions, "lr": LR}, | ||||
|              ] | ||||
|  | ||||
|   def base_parameters(self): | ||||
|     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) | ||||
|  | ||||
|   def get_flop(self, mode, config_dict, extra_info): | ||||
|     if config_dict is not None: config_dict = config_dict.copy() | ||||
|     # select channels  | ||||
|     channels = [3] | ||||
|     for i, weight in enumerate(self.width_attentions): | ||||
|       if mode == 'genotype': | ||||
|         with torch.no_grad(): | ||||
|           probe = nn.functional.softmax(weight, dim=0) | ||||
|           C = self.Ranges[i][ torch.argmax(probe).item() ] | ||||
|       else: | ||||
|         raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|       channels.append( C ) | ||||
|     # select depth | ||||
|     if mode == 'genotype': | ||||
|       with torch.no_grad(): | ||||
|         depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|         choices = torch.argmax(depth_probs, dim=1).cpu().tolist() | ||||
|     else: | ||||
|       raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|     selected_layers = [] | ||||
|     for choice, xvalue in zip(choices, self.depth_info_list): | ||||
|       xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1 | ||||
|       selected_layers.append(xtemp) | ||||
|     flop = 0 | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       s, e = self.layer2indexRange[i] | ||||
|       xchl = tuple( channels[s:e+1] ) | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         if xatti <= choices[xstagei]: # leave this depth | ||||
|           flop+= layer.get_flops(xchl) | ||||
|         else: | ||||
|           flop+= 0 # do not use this layer | ||||
|       else: | ||||
|         flop+= layer.get_flops(xchl) | ||||
|     # the last fc layer | ||||
|     flop += channels[-1] * self.classifier.out_features | ||||
|     if config_dict is None: | ||||
|       return flop / 1e6 | ||||
|     else: | ||||
|       config_dict['xchannels']  = channels | ||||
|       config_dict['xblocks']    = selected_layers | ||||
|       config_dict['super_type'] = 'infer-shape' | ||||
|       config_dict['estimated_FLOP'] = flop / 1e6 | ||||
|       return flop / 1e6, config_dict | ||||
|  | ||||
|   def get_arch_info(self): | ||||
|     string = "for depth and width, there are {:} + {:} attention probabilities.".format(len(self.depth_attentions), len(self.width_attentions)) | ||||
|     string+= '\n{:}'.format(self.depth_info) | ||||
|     discrepancy = [] | ||||
|     with torch.no_grad(): | ||||
|       for i, att in enumerate(self.depth_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:17s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|       string += '\n-----------------------------------------------' | ||||
|       for i, att in enumerate(self.width_attentions): | ||||
|         prob = nn.functional.softmax(att, dim=0) | ||||
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||
|         prob = ['{:.3f}'.format(x) for x in prob] | ||||
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob)) | ||||
|         logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()] | ||||
|         xstring += '  ||  {:52s}'.format(' '.join(logt)) | ||||
|         prob = sorted( [float(x) for x in prob] ) | ||||
|         disc = prob[-1] - prob[-2] | ||||
|         xstring += '  || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||
|         discrepancy.append( disc ) | ||||
|         string += '\n{:}'.format(xstring) | ||||
|     return string, discrepancy | ||||
|  | ||||
|   def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||
|     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio) | ||||
|     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     if self.search_mode == 'basic': | ||||
|       return self.basic_forward(inputs) | ||||
|     elif self.search_mode == 'search': | ||||
|       return self.search_forward(inputs) | ||||
|     else: | ||||
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||
|  | ||||
|   def search_forward(self, inputs): | ||||
|     flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||
|     flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) | ||||
|     flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] ) | ||||
|     selected_widths, selected_width_probs = select2withP(self.width_attentions, self.tau) | ||||
|     selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) | ||||
|     with torch.no_grad(): | ||||
|       selected_widths = selected_widths.cpu() | ||||
|  | ||||
|     x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||
|     feature_maps = [] | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       selected_w_index = selected_widths     [last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       selected_w_probs = selected_width_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       layer_prob       = flop_width_probs    [last_channel_idx: last_channel_idx+layer.num_conv] | ||||
|       x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) ) | ||||
|       feature_maps.append( x ) | ||||
|       last_channel_idx += layer.num_conv | ||||
|       if i in self.depth_info: # aggregate the information | ||||
|         choices = self.depth_info[i]['choices'] | ||||
|         xstagei = self.depth_info[i]['stage'] | ||||
|         #print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist())) | ||||
|         #for A, W in zip(choices, selected_depth_probs[xstagei]): | ||||
|         #  print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W)) | ||||
|         possible_tensors = [] | ||||
|         max_C = max( feature_maps[A].size(1) for A in choices ) | ||||
|         for tempi, A in enumerate(choices): | ||||
|           xtensor = ChannelWiseInter(feature_maps[A], max_C) | ||||
|           possible_tensors.append( xtensor ) | ||||
|         weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) ) | ||||
|         x = weighted_sum | ||||
|          | ||||
|       if i in self.depth_at_i: | ||||
|         xstagei, xatti = self.depth_at_i[i] | ||||
|         x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop | ||||
|       else: | ||||
|         x_expected_flop = expected_flop | ||||
|       flops.append( x_expected_flop ) | ||||
|     flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = linear_forward(features, self.classifier) | ||||
|     return logits, torch.stack( [sum(flops)] ) | ||||
|  | ||||
|   def basic_forward(self, inputs): | ||||
|     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||
|     x = inputs | ||||
|     for i, layer in enumerate(self.layers): | ||||
|       x = layer( x ) | ||||
|     features = self.avgpool(x) | ||||
|     features = features.view(features.size(0), -1) | ||||
|     logits   = self.classifier(features) | ||||
|     return features, logits | ||||
							
								
								
									
										108
									
								
								lib/models/searchs/SoftSelect.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										108
									
								
								lib/models/searchs/SoftSelect.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,108 @@ | ||||
| import math, torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| def select2withP(logits, tau, just_prob=False, num=2, eps=1e-7): | ||||
|   if tau <= 0: | ||||
|     new_logits = logits | ||||
|     probs = nn.functional.softmax(new_logits, dim=1) | ||||
|   else       : | ||||
|     while True: # a trick to avoid the gumbels bug | ||||
|       gumbels = -torch.empty_like(logits).exponential_().log() | ||||
|       new_logits = (logits + gumbels) / tau | ||||
|       probs = nn.functional.softmax(new_logits, dim=1) | ||||
|       if (not torch.isinf(gumbels).any()) and (not torch.isinf(probs).any()) and (not torch.isnan(probs).any()): break | ||||
|  | ||||
|   if just_prob: return probs | ||||
|  | ||||
|   #with torch.no_grad(): # add eps for unexpected torch error | ||||
|   #  probs = nn.functional.softmax(new_logits, dim=1) | ||||
|   #  selected_index = torch.multinomial(probs + eps, 2, False) | ||||
|   with torch.no_grad(): # add eps for unexpected torch error | ||||
|     probs          = probs.cpu() | ||||
|     selected_index = torch.multinomial(probs + eps, num, False).to(logits.device) | ||||
|   selected_logit = torch.gather(new_logits, 1, selected_index) | ||||
|   selcted_probs  = nn.functional.softmax(selected_logit, dim=1) | ||||
|   return selected_index, selcted_probs | ||||
|  | ||||
|  | ||||
| def ChannelWiseInter(inputs, oC, mode='v2'): | ||||
|   if mode == 'v1': | ||||
|     return ChannelWiseInterV1(inputs, oC) | ||||
|   elif mode == 'v2': | ||||
|     return ChannelWiseInterV2(inputs, oC) | ||||
|   else: | ||||
|     raise ValueError('invalid mode : {:}'.format(mode)) | ||||
|  | ||||
|  | ||||
| def ChannelWiseInterV1(inputs, oC): | ||||
|   assert inputs.dim() == 4, 'invalid dimension : {:}'.format(inputs.size()) | ||||
|   def start_index(a, b, c): | ||||
|     return int( math.floor(float(a * c) / b) ) | ||||
|   def end_index(a, b, c): | ||||
|     return int( math.ceil(float((a + 1) * c) / b) ) | ||||
|   batch, iC, H, W = inputs.size() | ||||
|   outputs = torch.zeros((batch, oC, H, W), dtype=inputs.dtype, device=inputs.device) | ||||
|   if iC == oC: return inputs | ||||
|   for ot in range(oC): | ||||
|     istartT, iendT = start_index(ot, oC, iC), end_index(ot, oC, iC) | ||||
|     values = inputs[:, istartT:iendT].mean(dim=1)  | ||||
|     outputs[:, ot, :, :] = values | ||||
|   return outputs | ||||
|  | ||||
|  | ||||
| def ChannelWiseInterV2(inputs, oC): | ||||
|   assert inputs.dim() == 4, 'invalid dimension : {:}'.format(inputs.size()) | ||||
|   batch, C, H, W = inputs.size() | ||||
|   if C == oC: return inputs | ||||
|   else      : return nn.functional.adaptive_avg_pool3d(inputs, (oC,H,W)) | ||||
|   #inputs_5D = inputs.view(batch, 1, C, H, W) | ||||
|   #otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'area', None) | ||||
|   #otputs    = otputs_5D.view(batch, oC, H, W) | ||||
|   #otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'trilinear', False) | ||||
|   #return otputs | ||||
|  | ||||
|  | ||||
| def linear_forward(inputs, linear): | ||||
|   if linear is None: return inputs | ||||
|   iC = inputs.size(1) | ||||
|   weight = linear.weight[:, :iC] | ||||
|   if linear.bias is None: bias = None | ||||
|   else                  : bias = linear.bias | ||||
|   return nn.functional.linear(inputs, weight, bias) | ||||
|  | ||||
|  | ||||
| def get_width_choices(nOut): | ||||
|   xsrange = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] | ||||
|   if nOut is None: | ||||
|     return len(xsrange) | ||||
|   else: | ||||
|     Xs = [int(nOut * i) for i in xsrange] | ||||
|     #xs = [ int(nOut * i // 10) for i in range(2, 11)] | ||||
|     #Xs = [x for i, x in enumerate(xs) if i+1 == len(xs) or xs[i+1] > x+1] | ||||
|     Xs = sorted( list( set(Xs) ) ) | ||||
|     return tuple(Xs) | ||||
|  | ||||
|  | ||||
| def get_depth_choices(nDepth): | ||||
|   if nDepth is None: | ||||
|     return 3 | ||||
|   else: | ||||
|     assert nDepth >= 3, 'nDepth should be greater than 2 vs {:}'.format(nDepth) | ||||
|     if nDepth == 1  : return (1, 1, 1) | ||||
|     elif nDepth == 2: return (1, 1, 2) | ||||
|     elif nDepth >= 3: | ||||
|       return (nDepth//3, nDepth*2//3, nDepth) | ||||
|     else: | ||||
|       raise ValueError('invalid Depth : {:}'.format(nDepth)) | ||||
|  | ||||
|  | ||||
| def drop_path(x, drop_prob): | ||||
|   if drop_prob > 0.: | ||||
|     keep_prob = 1. - drop_prob | ||||
|     mask = x.new_zeros(x.size(0), 1, 1, 1) | ||||
|     mask = mask.bernoulli_(keep_prob) | ||||
|     x = x * (mask / keep_prob) | ||||
|     #x.div_(keep_prob) | ||||
|     #x.mul_(mask) | ||||
|   return x | ||||
							
								
								
									
										4
									
								
								lib/models/searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								lib/models/searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,4 @@ | ||||
| from .SearchCifarResNet_width import SearchWidthCifarResNet | ||||
| from .SearchCifarResNet_depth import SearchDepthCifarResNet | ||||
| from .SearchCifarResNet       import SearchShapeCifarResNet | ||||
| from .SearchImagenetResNet    import SearchShapeImagenetResNet | ||||
							
								
								
									
										17
									
								
								lib/models/searchs/test.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										17
									
								
								lib/models/searchs/test.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,17 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from SoftSelect import ChannelWiseInter | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|   tensors = torch.rand((16, 128, 7, 7)) | ||||
|    | ||||
|   for oc in range(200, 210): | ||||
|     out_v1  = ChannelWiseInter(tensors, oc, 'v1') | ||||
|     out_v2  = ChannelWiseInter(tensors, oc, 'v2') | ||||
|     assert (out_v1 == out_v2).any().item() == 1 | ||||
|   for oc in range(48, 160): | ||||
|     out_v1  = ChannelWiseInter(tensors, oc, 'v1') | ||||
|     out_v2  = ChannelWiseInter(tensors, oc, 'v2') | ||||
|     assert (out_v1 == out_v2).any().item() == 1 | ||||
							
								
								
									
										139
									
								
								lib/models/sphereface.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										139
									
								
								lib/models/sphereface.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,139 @@ | ||||
| # SphereFace: Deep Hypersphere Embedding for Face Recognition | ||||
| # | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| import math | ||||
|  | ||||
| def myphi(x,m): | ||||
|   x = x * m | ||||
|   return 1-x**2/math.factorial(2)+x**4/math.factorial(4)-x**6/math.factorial(6) + \ | ||||
|       x**8/math.factorial(8) - x**9/math.factorial(9) | ||||
|  | ||||
| class AngleLinear(nn.Module): | ||||
|   def __init__(self, in_features, out_features, m = 4, phiflag=True): | ||||
|     super(AngleLinear, self).__init__() | ||||
|     self.in_features = in_features | ||||
|     self.out_features = out_features | ||||
|     self.weight = nn.Parameter(torch.Tensor(in_features,out_features)) | ||||
|     self.weight.data.uniform_(-1, 1).renorm_(2,1,1e-5).mul_(1e5) | ||||
|     self.phiflag = phiflag | ||||
|     self.m = m | ||||
|     self.mlambda = [ | ||||
|       lambda x: x**0, | ||||
|       lambda x: x**1, | ||||
|       lambda x: 2*x**2-1, | ||||
|       lambda x: 4*x**3-3*x, | ||||
|       lambda x: 8*x**4-8*x**2+1, | ||||
|       lambda x: 16*x**5-20*x**3+5*x | ||||
|     ] | ||||
|  | ||||
|   def forward(self, input): | ||||
|     x = input   # size=(B,F)  F is feature len | ||||
|     w = self.weight # size=(F,Classnum) F=in_features Classnum=out_features | ||||
|  | ||||
|     ww = w.renorm(2,1,1e-5).mul(1e5) | ||||
|     xlen = x.pow(2).sum(1).pow(0.5) # size=B | ||||
|     wlen = ww.pow(2).sum(0).pow(0.5) # size=Classnum | ||||
|  | ||||
|     cos_theta = x.mm(ww) # size=(B,Classnum) | ||||
|     cos_theta = cos_theta / xlen.view(-1,1) / wlen.view(1,-1) | ||||
|     cos_theta = cos_theta.clamp(-1,1) | ||||
|  | ||||
|     if self.phiflag: | ||||
|       cos_m_theta = self.mlambda[self.m](cos_theta) | ||||
|       with torch.no_grad(): | ||||
|         theta = cos_theta.acos() | ||||
|       k = (self.m*theta/3.14159265).floor() | ||||
|       n_one = k*0.0 - 1 | ||||
|       phi_theta = (n_one**k) * cos_m_theta - 2*k | ||||
|     else: | ||||
|       theta = cos_theta.acos() | ||||
|       phi_theta = myphi(theta,self.m) | ||||
|       phi_theta = phi_theta.clamp(-1*self.m,1) | ||||
|  | ||||
|     cos_theta = cos_theta * xlen.view(-1,1) | ||||
|     phi_theta = phi_theta * xlen.view(-1,1) | ||||
|     output = (cos_theta,phi_theta) | ||||
|     return output # size=(B,Classnum,2) | ||||
|  | ||||
|  | ||||
| class SphereFace20(nn.Module): | ||||
|   def __init__(self, classnum=10574): | ||||
|     super(SphereFace20, self).__init__() | ||||
|     self.classnum = classnum | ||||
|     #input = B*3*112*96 | ||||
|     self.conv1_1 = nn.Conv2d(3,64,3,2,1) #=>B*64*56*48 | ||||
|     self.relu1_1 = nn.PReLU(64) | ||||
|     self.conv1_2 = nn.Conv2d(64,64,3,1,1) | ||||
|     self.relu1_2 = nn.PReLU(64) | ||||
|     self.conv1_3 = nn.Conv2d(64,64,3,1,1) | ||||
|     self.relu1_3 = nn.PReLU(64) | ||||
|  | ||||
|     self.conv2_1 = nn.Conv2d(64,128,3,2,1) #=>B*128*28*24 | ||||
|     self.relu2_1 = nn.PReLU(128) | ||||
|     self.conv2_2 = nn.Conv2d(128,128,3,1,1) | ||||
|     self.relu2_2 = nn.PReLU(128) | ||||
|     self.conv2_3 = nn.Conv2d(128,128,3,1,1) | ||||
|     self.relu2_3 = nn.PReLU(128) | ||||
|  | ||||
|     self.conv2_4 = nn.Conv2d(128,128,3,1,1) #=>B*128*28*24 | ||||
|     self.relu2_4 = nn.PReLU(128) | ||||
|     self.conv2_5 = nn.Conv2d(128,128,3,1,1) | ||||
|     self.relu2_5 = nn.PReLU(128) | ||||
|  | ||||
|  | ||||
|     self.conv3_1 = nn.Conv2d(128,256,3,2,1) #=>B*256*14*12 | ||||
|     self.relu3_1 = nn.PReLU(256) | ||||
|     self.conv3_2 = nn.Conv2d(256,256,3,1,1) | ||||
|     self.relu3_2 = nn.PReLU(256) | ||||
|     self.conv3_3 = nn.Conv2d(256,256,3,1,1) | ||||
|     self.relu3_3 = nn.PReLU(256) | ||||
|  | ||||
|     self.conv3_4 = nn.Conv2d(256,256,3,1,1) #=>B*256*14*12 | ||||
|     self.relu3_4 = nn.PReLU(256) | ||||
|     self.conv3_5 = nn.Conv2d(256,256,3,1,1) | ||||
|     self.relu3_5 = nn.PReLU(256) | ||||
|  | ||||
|     self.conv3_6 = nn.Conv2d(256,256,3,1,1) #=>B*256*14*12 | ||||
|     self.relu3_6 = nn.PReLU(256) | ||||
|     self.conv3_7 = nn.Conv2d(256,256,3,1,1) | ||||
|     self.relu3_7 = nn.PReLU(256) | ||||
|  | ||||
|     self.conv3_8 = nn.Conv2d(256,256,3,1,1) #=>B*256*14*12 | ||||
|     self.relu3_8 = nn.PReLU(256) | ||||
|     self.conv3_9 = nn.Conv2d(256,256,3,1,1) | ||||
|     self.relu3_9 = nn.PReLU(256) | ||||
|  | ||||
|     self.conv4_1 = nn.Conv2d(256,512,3,2,1) #=>B*512*7*6 | ||||
|     self.relu4_1 = nn.PReLU(512) | ||||
|     self.conv4_2 = nn.Conv2d(512,512,3,1,1) | ||||
|     self.relu4_2 = nn.PReLU(512) | ||||
|     self.conv4_3 = nn.Conv2d(512,512,3,1,1) | ||||
|     self.relu4_3 = nn.PReLU(512) | ||||
|  | ||||
|     self.fc5 = nn.Linear(512*7*6,512) | ||||
|     self.fc6 = AngleLinear(512, self.classnum) | ||||
|  | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = self.relu1_1(self.conv1_1(x)) | ||||
|     x = x + self.relu1_3(self.conv1_3(self.relu1_2(self.conv1_2(x)))) | ||||
|  | ||||
|     x = self.relu2_1(self.conv2_1(x)) | ||||
|     x = x + self.relu2_3(self.conv2_3(self.relu2_2(self.conv2_2(x)))) | ||||
|     x = x + self.relu2_5(self.conv2_5(self.relu2_4(self.conv2_4(x)))) | ||||
|  | ||||
|     x = self.relu3_1(self.conv3_1(x)) | ||||
|     x = x + self.relu3_3(self.conv3_3(self.relu3_2(self.conv3_2(x)))) | ||||
|     x = x + self.relu3_5(self.conv3_5(self.relu3_4(self.conv3_4(x)))) | ||||
|     x = x + self.relu3_7(self.conv3_7(self.relu3_6(self.conv3_6(x)))) | ||||
|     x = x + self.relu3_9(self.conv3_9(self.relu3_8(self.conv3_8(x)))) | ||||
|  | ||||
|     x = self.relu4_1(self.conv4_1(x)) | ||||
|     x = x + self.relu4_3(self.conv4_3(self.relu4_2(self.conv4_2(x)))) | ||||
|  | ||||
|     x = x.view(x.size(0),-1) | ||||
|     features = self.fc5(x) | ||||
|     logits   = self.fc6(features) | ||||
|     return features, logits | ||||
		Reference in New Issue
	
	Block a user