Update SuperViT

This commit is contained in:
D-X-Y 2021-06-09 05:39:35 -07:00
parent 0ddc5c0dc4
commit d4546cfe3f
4 changed files with 119 additions and 69 deletions

View File

@ -10,20 +10,31 @@ import torch
from xautodl.xmodels import transformers
from xautodl.utils.flop_benchmark import count_parameters
class TestSuperViT(unittest.TestCase):
"""Test the super re-arrange layer."""
def test_super_vit(self):
model = transformers.get_transformer("vit-base")
tensor = torch.rand((16, 3, 256, 256))
model = transformers.get_transformer("vit-base-16")
tensor = torch.rand((16, 3, 224, 224))
print("The tensor shape: {:}".format(tensor.shape))
print(model)
# print(model)
outs = model(tensor)
print("The output tensor shape: {:}".format(outs.shape))
def test_model_size(self):
def test_imagenet(self):
name2config = transformers.name2config
print("There are {:} models in total.".format(len(name2config)))
for name, config in name2config.items():
if "cifar" in name:
tensor = torch.rand((16, 3, 32, 32))
else:
tensor = torch.rand((16, 3, 224, 224))
model = transformers.get_transformer(config)
outs = model(tensor)
size = count_parameters(model, "mb", True)
print('{:10s} : size={:.2f}MB'.format(name, size))
print(
"{:10s} : size={:.2f}MB, out-shape: {:}".format(
name, size, tuple(outs.shape)
)
)

View File

@ -13,6 +13,7 @@ from xautodl import spaces
from .super_module import SuperModule
from .super_module import IntSpaceType
from .super_module import BoolSpaceType
from .super_dropout import SuperDropout, SuperDrop
from .super_linear import SuperLinear
@ -22,7 +23,7 @@ class SuperSelfAttention(SuperModule):
def __init__(
self,
input_dim: IntSpaceType,
proj_dim: IntSpaceType,
proj_dim: Optional[IntSpaceType],
num_heads: IntSpaceType,
qkv_bias: BoolSpaceType = False,
attn_drop: Optional[float] = None,
@ -37,13 +38,17 @@ class SuperSelfAttention(SuperModule):
self._use_mask = use_mask
self._infinity = 1e9
self.q_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias)
self.k_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias)
self.v_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias)
mul_head_dim = (input_dim // num_heads) * num_heads
self.q_fc = SuperLinear(input_dim, mul_head_dim, bias=qkv_bias)
self.k_fc = SuperLinear(input_dim, mul_head_dim, bias=qkv_bias)
self.v_fc = SuperLinear(input_dim, mul_head_dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop or 0.0)
self.proj = SuperLinear(input_dim, proj_dim)
self.proj_drop = nn.Dropout(proj_drop or 0.0)
self.attn_drop = SuperDrop(attn_drop, [-1, -1, -1, -1], recover=True)
if proj_dim is None:
self.proj = SuperLinear(input_dim, proj_dim)
self.proj_drop = SuperDropout(proj_drop or 0.0)
else:
self.proj = None
@property
def num_heads(self):
@ -63,7 +68,6 @@ class SuperSelfAttention(SuperModule):
space_q = self.q_fc.abstract_search_space
space_k = self.k_fc.abstract_search_space
space_v = self.v_fc.abstract_search_space
space_proj = self.proj.abstract_search_space
if not spaces.is_determined(self._num_heads):
root_node.append("_num_heads", self._num_heads.abstract(reuse_last=True))
if not spaces.is_determined(space_q):
@ -72,8 +76,10 @@ class SuperSelfAttention(SuperModule):
root_node.append("k_fc", space_k)
if not spaces.is_determined(space_v):
root_node.append("v_fc", space_v)
if not spaces.is_determined(space_proj):
root_node.append("proj", space_proj)
if self.proj is not None:
space_proj = self.proj.abstract_search_space
if not spaces.is_determined(space_proj):
root_node.append("proj", space_proj)
return root_node
def apply_candidate(self, abstract_child: spaces.VirtualNode):
@ -121,18 +127,7 @@ class SuperSelfAttention(SuperModule):
attn_v1 = attn_v1.softmax(dim=-1) # B * #head * N * N
attn_v1 = self.attn_drop(attn_v1)
feats_v1 = (attn_v1 @ v_v1).permute(0, 2, 1, 3).reshape(B, N, -1)
if C == head_dim * num_head:
feats = feats_v1
else: # The channels can not be divided by num_head, the remainder forms an additional head
q_v2 = q[:, :, num_head * head_dim :]
k_v2 = k[:, :, num_head * head_dim :]
v_v2 = v[:, :, num_head * head_dim :]
attn_v2 = (q_v2 @ k_v2.transpose(-2, -1)) * math.sqrt(q_v2.shape[-1])
attn_v2 = attn_v2.softmax(dim=-1)
attn_v2 = self.attn_drop(attn_v2)
feats_v2 = attn_v2 @ v_v2
feats = torch.cat([feats_v1, feats_v2], dim=-1)
return feats
return feats_v1
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
# check the num_heads:
@ -141,15 +136,21 @@ class SuperSelfAttention(SuperModule):
else:
num_heads = spaces.get_determined_value(self._num_heads)
feats = self.forward_qkv(input, num_heads)
outs = self.proj(feats)
outs = self.proj_drop(outs)
return outs
if self.proj is None:
return feats
else:
outs = self.proj(feats)
outs = self.proj_drop(outs)
return outs
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
feats = self.forward_qkv(input, self.num_heads)
outs = self.proj(feats)
outs = self.proj_drop(outs)
return outs
if self.proj is None:
return feats
else:
outs = self.proj(feats)
outs = self.proj_drop(outs)
return outs
def extra_repr(self) -> str:
return (

View File

@ -37,7 +37,8 @@ class SuperTransformerEncoderLayer(SuperModule):
num_heads: IntSpaceType,
qkv_bias: BoolSpaceType = False,
mlp_hidden_multiplier: IntSpaceType = 4,
drop: Optional[float] = None,
dropout: Optional[float] = None,
att_dropout: Optional[float] = None,
norm_affine: bool = True,
act_layer: Callable[[], nn.Module] = nn.GELU,
order: LayerOrder = LayerOrder.PreNorm,
@ -49,8 +50,8 @@ class SuperTransformerEncoderLayer(SuperModule):
d_model,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=drop,
proj_drop=drop,
attn_drop=att_dropout,
proj_drop=None,
use_mask=use_mask,
)
mlp = SuperMLPv2(
@ -58,21 +59,20 @@ class SuperTransformerEncoderLayer(SuperModule):
hidden_multiplier=mlp_hidden_multiplier,
out_features=d_model,
act_layer=act_layer,
drop=drop,
drop=dropout,
)
if order is LayerOrder.PreNorm:
self.norm1 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
self.mha = mha
self.drop1 = nn.Dropout(drop or 0.0)
self.drop = nn.Dropout(dropout or 0.0)
self.norm2 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
self.mlp = mlp
self.drop2 = nn.Dropout(drop or 0.0)
elif order is LayerOrder.PostNorm:
self.mha = mha
self.drop1 = nn.Dropout(drop or 0.0)
self.drop1 = nn.Dropout(dropout or 0.0)
self.norm1 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
self.mlp = mlp
self.drop2 = nn.Dropout(drop or 0.0)
self.drop2 = nn.Dropout(dropout or 0.0)
self.norm2 = SuperLayerNorm1D(d_model, elementwise_affine=norm_affine)
else:
raise ValueError("Unknown order: {:}".format(order))
@ -99,23 +99,29 @@ class SuperTransformerEncoderLayer(SuperModule):
if key in abstract_child:
getattr(self, key).apply_candidate(abstract_child[key])
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
return self.forward_raw(input)
def forward_candidate(self, inputs: torch.Tensor) -> torch.Tensor:
return self.forward_raw(inputs)
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
def forward_raw(self, inputs: torch.Tensor) -> torch.Tensor:
if self._order is LayerOrder.PreNorm:
x = self.norm1(input)
x = x + self.drop1(self.mha(x))
x = self.norm2(x)
x = x + self.drop2(self.mlp(x))
# https://github.com/google-research/vision_transformer/blob/master/vit_jax/models.py#L135
x = self.norm1(inputs)
x = self.mha(x)
x = self.drop(x)
x = x + inputs
# feed-forward layer -- MLP
y = self.norm2(x)
outs = x + self.mlp(y)
elif self._order is LayerOrder.PostNorm:
# https://pytorch.org/docs/stable/_modules/torch/nn/modules/transformer.html#TransformerEncoder
# multi-head attention
x = self.mha(input)
x = x + self.drop1(x)
x = self.mha(inputs)
x = inputs + self.drop1(x)
x = self.norm1(x)
# feed-forward layer
x = x + self.drop2(self.mlp(x))
x = self.norm2(x)
# feed-forward layer -- MLP
y = self.mlp(x)
y = x + self.drop2(y)
outs = self.norm2(y)
else:
raise ValueError("Unknown order: {:}".format(self._order))
return x
return outs

View File

@ -3,7 +3,7 @@
#####################################################
# Vision Transformer: arxiv.org/pdf/2010.11929.pdf #
#####################################################
import math
import copy, math
from functools import partial
from typing import Optional, Text, List
@ -35,42 +35,69 @@ def _init_weights(m):
name2config = {
"vit-base": dict(
"vit-cifar10-p4-d4-h4-c32": dict(
type="vit",
image_size=256,
image_size=32,
patch_size=4,
num_classes=10,
dim=32,
depth=4,
heads=4,
dropout=0.1,
att_dropout=0.0,
),
"vit-base-16": dict(
type="vit",
image_size=224,
patch_size=16,
num_classes=1000,
dim=768,
depth=12,
heads=12,
dropout=0.1,
emb_dropout=0.1,
att_dropout=0.0,
),
"vit-large": dict(
"vit-large-16": dict(
type="vit",
image_size=256,
image_size=224,
patch_size=16,
num_classes=1000,
dim=1024,
depth=24,
heads=16,
dropout=0.1,
emb_dropout=0.1,
att_dropout=0.0,
),
"vit-huge": dict(
"vit-huge-14": dict(
type="vit",
image_size=256,
patch_size=16,
image_size=224,
patch_size=14,
num_classes=1000,
dim=1280,
depth=32,
heads=16,
dropout=0.1,
emb_dropout=0.1,
att_dropout=0.0,
),
}
def extend_cifar100(configs):
new_configs = dict()
for name, config in configs.items():
new_configs[name] = config
if "cifar10" in name and "cifar100" not in name:
config = copy.deepcopy(config)
config["num_classes"] = 100
a, b = name.split("cifar10")
new_name = "{:}cifar100{:}".format(a, b)
new_configs[new_name] = config
return new_configs
name2config = extend_cifar100(name2config)
class SuperViT(xlayers.SuperModule):
"""The super model for transformer."""
@ -85,7 +112,7 @@ class SuperViT(xlayers.SuperModule):
mlp_multiplier=4,
channels=3,
dropout=0.0,
emb_dropout=0.0,
att_dropout=0.0,
):
super(SuperViT, self).__init__()
image_height, image_width = pair(image_size)
@ -107,14 +134,19 @@ class SuperViT(xlayers.SuperModule):
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.dropout = nn.Dropout(dropout)
# build the transformer encode layers
layers = []
for ilayer in range(depth):
layers.append(
xlayers.SuperTransformerEncoderLayer(
dim, heads, False, mlp_multiplier, dropout
dim,
heads,
False,
mlp_multiplier,
dropout=dropout,
att_dropout=att_dropout,
)
)
self.backbone = xlayers.SuperSequential(*layers)
@ -167,7 +199,7 @@ def get_transformer(config):
depth=config.get("depth"),
heads=config.get("heads"),
dropout=config.get("dropout"),
emb_dropout=config.get("emb_dropout"),
att_dropout=config.get("att_dropout"),
)
else:
raise ValueError("Unknown model type: {:}".format(model_type))