Update visualization codees for WS.
This commit is contained in:
		| @@ -3,12 +3,12 @@ | |||||||
| ##################################################################################################### | ##################################################################################################### | ||||||
| # modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py # | # modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py # | ||||||
| ##################################################################################################### | ##################################################################################################### | ||||||
| # python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space tss --learning_rate 0.001  | # python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space tss --learning_rate 0.01  | ||||||
| # python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space tss --learning_rate 0.001  | # python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space tss --learning_rate 0.01  | ||||||
| # python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space tss --learning_rate 0.001  | # python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space tss --learning_rate 0.01  | ||||||
| # python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space sss --learning_rate 0.001  | # python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space sss --learning_rate 0.01  | ||||||
| # python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space sss --learning_rate 0.001  | # python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space sss --learning_rate 0.01  | ||||||
| # python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space sss --learning_rate 0.001  | # python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space sss --learning_rate 0.01  | ||||||
| ##################################################################################################### | ##################################################################################################### | ||||||
| import os, sys, time, glob, random, argparse | import os, sys, time, glob, random, argparse | ||||||
| import numpy as np, collections | import numpy as np, collections | ||||||
|   | |||||||
| @@ -11,7 +11,7 @@ for dataset in ${datasets} | |||||||
| do | do | ||||||
|   for search_space in ${search_spaces} |   for search_space in ${search_spaces} | ||||||
|   do |   do | ||||||
|     python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001 |     python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.01 | ||||||
|     python ./exps/algos-v2/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 |     python ./exps/algos-v2/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 | ||||||
|     python ./exps/algos-v2/random_wo_share.py --dataset ${dataset} --search_space ${search_space} |     python ./exps/algos-v2/random_wo_share.py --dataset ${dataset} --search_space ${search_space} | ||||||
|     python ./exps/algos-v2/bohb.py --dataset ${dataset} --search_space ${search_space} --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 |     python ./exps/algos-v2/bohb.py --dataset ${dataset} --search_space ${search_space} --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 | ||||||
|   | |||||||
| @@ -399,6 +399,9 @@ def main(xargs): | |||||||
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()))) |     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()))) | ||||||
|  |  | ||||||
|     network.set_drop_path(float(epoch+1) / total_epoch, xargs.drop_path_rate) |     network.set_drop_path(float(epoch+1) / total_epoch, xargs.drop_path_rate) | ||||||
|  |     if xargs.algo == 'gdas': | ||||||
|  |       network.set_tau( xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (total_epoch-1) ) | ||||||
|  |       logger.log('[Reset tau as : {:}'.format(network.tau)) | ||||||
|     search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \ |     search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \ | ||||||
|                 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, xargs.algo, logger) |                 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, xargs.algo, logger) | ||||||
|     search_time.update(time.time() - start_time) |     search_time.update(time.time() - start_time) | ||||||
| @@ -480,6 +483,9 @@ if __name__ == '__main__': | |||||||
|   parser.add_argument('--dataset'     ,       type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') |   parser.add_argument('--dataset'     ,       type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||||
|   parser.add_argument('--search_space',       type=str,   default='tss', choices=['tss'], help='The search space name.') |   parser.add_argument('--search_space',       type=str,   default='tss', choices=['tss'], help='The search space name.') | ||||||
|   parser.add_argument('--algo'        ,       type=str,   choices=['darts-v1', 'darts-v2', 'gdas', 'setn', 'random', 'enas'], help='The search space name.') |   parser.add_argument('--algo'        ,       type=str,   choices=['darts-v1', 'darts-v2', 'gdas', 'setn', 'random', 'enas'], help='The search space name.') | ||||||
|  |   # FOR GDAS | ||||||
|  |   parser.add_argument('--tau_min',            type=float, default=0.1,  help='The minimum tau for Gumbel Softmax.') | ||||||
|  |   parser.add_argument('--tau_max',            type=float, default=10,   help='The maximum tau for Gumbel Softmax.') | ||||||
|   # channels and number-of-cells |   # channels and number-of-cells | ||||||
|   parser.add_argument('--max_nodes'   ,       type=int,   default=4,  help='The maximum number of nodes.') |   parser.add_argument('--max_nodes'   ,       type=int,   default=4,  help='The maximum number of nodes.') | ||||||
|   parser.add_argument('--channel'     ,       type=int,   default=16, help='The number of channels.') |   parser.add_argument('--channel'     ,       type=int,   default=16, help='The number of channels.') | ||||||
|   | |||||||
| @@ -30,7 +30,7 @@ def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | |||||||
|   ss_dir = '{:}-{:}'.format(root_dir, search_space) |   ss_dir = '{:}-{:}'.format(root_dir, search_space) | ||||||
|   alg2name, alg2path = OrderedDict(), OrderedDict() |   alg2name, alg2path = OrderedDict(), OrderedDict() | ||||||
|   alg2name['REA'] = 'R-EA-SS3' |   alg2name['REA'] = 'R-EA-SS3' | ||||||
|   alg2name['REINFORCE'] = 'REINFORCE-0.001' |   alg2name['REINFORCE'] = 'REINFORCE-0.01' | ||||||
|   alg2name['RANDOM'] = 'RANDOM' |   alg2name['RANDOM'] = 'RANDOM' | ||||||
|   alg2name['BOHB'] = 'BOHB' |   alg2name['BOHB'] = 'BOHB' | ||||||
|   for alg, name in alg2name.items(): |   for alg, name in alg2name.items(): | ||||||
|   | |||||||
							
								
								
									
										126
									
								
								exps/experimental/vis-bench-ws.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										126
									
								
								exps/experimental/vis-bench-ws.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,126 @@ | |||||||
|  | ############################################################### | ||||||
|  | # NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) # | ||||||
|  | ############################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           # | ||||||
|  | ############################################################### | ||||||
|  | # Usage: python exps/experimental/vis-bench-ws.py --search_space tss | ||||||
|  | # Usage: python exps/experimental/vis-bench-ws.py --search_space sss | ||||||
|  | ############################################################### | ||||||
|  | import os, gc, sys, time, torch, argparse | ||||||
|  | import numpy as np | ||||||
|  | from typing import List, Text, Dict, Any | ||||||
|  | from shutil import copyfile | ||||||
|  | from collections import defaultdict, OrderedDict | ||||||
|  | from copy    import deepcopy | ||||||
|  | from pathlib import Path | ||||||
|  | import matplotlib | ||||||
|  | import seaborn as sns | ||||||
|  | matplotlib.use('agg') | ||||||
|  | import matplotlib.pyplot as plt | ||||||
|  | import matplotlib.ticker as ticker | ||||||
|  |  | ||||||
|  | lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||||
|  | if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||||
|  | from config_utils import dict2config, load_config | ||||||
|  | from nas_201_api import NASBench201API, NASBench301API | ||||||
|  | from log_utils import time_string | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | ||||||
|  |   ss_dir = '{:}-{:}'.format(root_dir, search_space) | ||||||
|  |   alg2name, alg2path = OrderedDict(), OrderedDict() | ||||||
|  |   seeds = [777] | ||||||
|  |   alg2name['GDAS'] = 'gdas-affine1_BN0-None' | ||||||
|  |   """ | ||||||
|  |   alg2name['DARTS (1st)'] = 'darts-v1-affine1_BN0-None' | ||||||
|  |   alg2name['DARTS (2nd)'] = 'darts-v2-affine1_BN0-None' | ||||||
|  |   alg2name['SETN'] = 'setn-affine1_BN0-None' | ||||||
|  |   alg2name['RSPS'] = 'random-affine1_BN0-None' | ||||||
|  |   """ | ||||||
|  |   for alg, name in alg2name.items(): | ||||||
|  |     alg2path[alg] = os.path.join(ss_dir, dataset, name, 'seed-{:}-last-info.pth') | ||||||
|  |   alg2data = OrderedDict() | ||||||
|  |   for alg, path in alg2path.items(): | ||||||
|  |     alg2data[alg] = [] | ||||||
|  |     for seed in seeds: | ||||||
|  |       xpath = path.format(seed) | ||||||
|  |       assert os.path.isfile(xpath), 'invalid path : {:}'.format(xpath) | ||||||
|  |       data = torch.load(xpath, map_location=torch.device('cpu')) | ||||||
|  |       data = torch.load(data['last_checkpoint'], map_location=torch.device('cpu')) | ||||||
|  |       alg2data[alg].append(data['genotypes']) | ||||||
|  |   return alg2data | ||||||
|  |  | ||||||
|  |  | ||||||
|  | y_min_s = {('cifar10', 'tss'): 90, | ||||||
|  |            ('cifar10', 'sss'): 92, | ||||||
|  |            ('cifar100', 'tss'): 65, | ||||||
|  |            ('cifar100', 'sss'): 65, | ||||||
|  |            ('ImageNet16-120', 'tss'): 36, | ||||||
|  |            ('ImageNet16-120', 'sss'): 40} | ||||||
|  |  | ||||||
|  | y_max_s = {('cifar10', 'tss'): 94.5, | ||||||
|  |            ('cifar10', 'sss'): 93.3, | ||||||
|  |            ('cifar100', 'tss'): 72, | ||||||
|  |            ('cifar100', 'sss'): 70, | ||||||
|  |            ('ImageNet16-120', 'tss'): 44, | ||||||
|  |            ('ImageNet16-120', 'sss'): 46} | ||||||
|  |  | ||||||
|  | def visualize_curve(api, vis_save_dir, search_space): | ||||||
|  |   vis_save_dir = vis_save_dir.resolve() | ||||||
|  |   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||||
|  |  | ||||||
|  |   dpi, width, height = 250, 5200, 1400 | ||||||
|  |   figsize = width / float(dpi), height / float(dpi) | ||||||
|  |   LabelSize, LegendFontsize = 16, 16 | ||||||
|  |  | ||||||
|  |   def sub_plot_fn(ax, dataset): | ||||||
|  |     alg2data = fetch_data(search_space=search_space, dataset=dataset) | ||||||
|  |     alg2accuracies = OrderedDict() | ||||||
|  |     epochs = 20 | ||||||
|  |     colors = ['b', 'g', 'c', 'm', 'y'] | ||||||
|  |     ax.set_xlim(0, epochs) | ||||||
|  |     # ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)]) | ||||||
|  |     for idx, (alg, data) in enumerate(alg2data.items()): | ||||||
|  |       print('plot alg : {:}'.format(alg)) | ||||||
|  |       xs, accuracies = [], [] | ||||||
|  |       for iepoch in range(epochs+1): | ||||||
|  |         structures, accs = [_[iepoch-1] for _ in data], [] | ||||||
|  |         for structure in structures: | ||||||
|  |           info = api.get_more_info(structure, dataset=dataset, hp=90 if isinstance(api, NASBench301API) else 200, is_random=False) | ||||||
|  |           accs.append(info['test-accuracy']) | ||||||
|  |         accuracies.append(sum(accs)/len(accs)) | ||||||
|  |         xs.append(iepoch) | ||||||
|  |       alg2accuracies[alg] = accuracies | ||||||
|  |       ax.plot(xs, accuracies, c=colors[idx], label='{:}'.format(alg)) | ||||||
|  |       ax.set_xlabel('The searching epoch', fontsize=LabelSize) | ||||||
|  |       ax.set_ylabel('Test accuracy on {:}'.format(dataset), fontsize=LabelSize) | ||||||
|  |       ax.set_title('Searching results on {:}'.format(dataset), fontsize=LabelSize+4) | ||||||
|  |     ax.legend(loc=4, fontsize=LegendFontsize) | ||||||
|  |  | ||||||
|  |   fig, axs = plt.subplots(1, 3, figsize=figsize) | ||||||
|  |   datasets = ['cifar10', 'cifar100', 'ImageNet16-120'] | ||||||
|  |   for dataset, ax in zip(datasets, axs): | ||||||
|  |     sub_plot_fn(ax, dataset) | ||||||
|  |     print('sub-plot {:} on {:} done.'.format(dataset, search_space)) | ||||||
|  |   save_path = (vis_save_dir / '{:}-ws-curve.png'.format(search_space)).resolve() | ||||||
|  |   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||||
|  |   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||||
|  |   plt.close('all') | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == '__main__': | ||||||
|  |   parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||||
|  |   parser.add_argument('--save_dir',     type=str,   default='output/vis-nas-bench/nas-algos', help='Folder to save checkpoints and log.') | ||||||
|  |   parser.add_argument('--search_space', type=str,   default='tss', choices=['tss', 'sss'], help='Choose the search space.') | ||||||
|  |   args = parser.parse_args() | ||||||
|  |  | ||||||
|  |   save_dir = Path(args.save_dir) | ||||||
|  |   alg2data = fetch_data(search_space='tss', dataset='cifar10') | ||||||
|  |  | ||||||
|  |   if args.search_space == 'tss': | ||||||
|  |     api = NASBench201API(verbose=False) | ||||||
|  |   elif args.search_space == 'sss': | ||||||
|  |     api = NASBench301API(verbose=False) | ||||||
|  |   else: | ||||||
|  |     raise ValueError('Invalid search space : {:}'.format(args.search_space)) | ||||||
|  |   visualize_curve(api, save_dir, args.search_space) | ||||||
		Reference in New Issue
	
	Block a user