Add MobileNetV2
This commit is contained in:
		
							
								
								
									
										24
									
								
								exps/experimental/test-flops.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								exps/experimental/test-flops.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,24 @@ | ||||
| import sys, time, random, argparse | ||||
| from copy import deepcopy | ||||
| import torchvision.models as models | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| from utils import get_model_infos | ||||
| #from models.ImageNet_MobileNetV2 import MobileNetV2 | ||||
| from torchvision.models.mobilenet import MobileNetV2 | ||||
|  | ||||
| def main(width_mult): | ||||
|   # model = MobileNetV2(1001, width_mult, 32, 1280, 'InvertedResidual', 0.2) | ||||
|   model = MobileNetV2(width_mult=width_mult) | ||||
|   print(model) | ||||
|   flops, params = get_model_infos(model, (2, 3, 224, 224)) | ||||
|   print('FLOPs : {:}'.format(flops)) | ||||
|   print('Params : {:}'.format(params)) | ||||
|   print('-'*50) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   main(1.0) | ||||
|   main(1.4) | ||||
							
								
								
									
										101
									
								
								lib/models/ImageNet_MobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										101
									
								
								lib/models/ImageNet_MobileNetV2.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,101 @@ | ||||
| # MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018 | ||||
| from torch import nn | ||||
| from .initialization import initialize_resnet | ||||
|  | ||||
|  | ||||
| class ConvBNReLU(nn.Module): | ||||
|   def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): | ||||
|     super(ConvBNReLU, self).__init__() | ||||
|     padding = (kernel_size - 1) // 2 | ||||
|     self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False) | ||||
|     self.bn   = nn.BatchNorm2d(out_planes) | ||||
|     self.relu = nn.ReLU6(inplace=True) | ||||
|    | ||||
|   def forward(self, x): | ||||
|     out = self.conv( x ) | ||||
|     out = self.bn  ( out ) | ||||
|     out = self.relu( out ) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| class InvertedResidual(nn.Module): | ||||
|   def __init__(self, inp, oup, stride, expand_ratio): | ||||
|     super(InvertedResidual, self).__init__() | ||||
|     self.stride = stride | ||||
|     assert stride in [1, 2] | ||||
|  | ||||
|     hidden_dim = int(round(inp * expand_ratio)) | ||||
|     self.use_res_connect = self.stride == 1 and inp == oup | ||||
|  | ||||
|     layers = [] | ||||
|     if expand_ratio != 1: | ||||
|       # pw | ||||
|       layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) | ||||
|     layers.extend([ | ||||
|       # dw | ||||
|       ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), | ||||
|       # pw-linear | ||||
|       nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | ||||
|       nn.BatchNorm2d(oup), | ||||
|     ]) | ||||
|     self.conv = nn.Sequential(*layers) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     if self.use_res_connect: | ||||
|       return x + self.conv(x) | ||||
|     else: | ||||
|       return self.conv(x) | ||||
|  | ||||
|  | ||||
| class MobileNetV2(nn.Module): | ||||
|   def __init__(self, num_classes, width_mult, input_channel, last_channel, block_name, dropout): | ||||
|     super(MobileNetV2, self).__init__() | ||||
|     if block_name == 'InvertedResidual': | ||||
|       block = InvertedResidual | ||||
|     else: | ||||
|       raise ValueError('invalid block name : {:}'.format(block_name)) | ||||
|     inverted_residual_setting = [ | ||||
|       # t, c,  n, s | ||||
|       [1, 16 , 1, 1], | ||||
|       [6, 24 , 2, 2], | ||||
|       [6, 32 , 3, 2], | ||||
|       [6, 64 , 4, 2], | ||||
|       [6, 96 , 3, 1], | ||||
|       [6, 160, 3, 2], | ||||
|       [6, 320, 1, 1], | ||||
|     ] | ||||
|  | ||||
|     # building first layer | ||||
|     input_channel = int(input_channel * width_mult) | ||||
|     self.last_channel = int(last_channel * max(1.0, width_mult)) | ||||
|     features = [ConvBNReLU(3, input_channel, stride=2)] | ||||
|     # building inverted residual blocks | ||||
|     for t, c, n, s in inverted_residual_setting: | ||||
|       output_channel = int(c * width_mult) | ||||
|       for i in range(n): | ||||
|         stride = s if i == 0 else 1 | ||||
|         features.append(block(input_channel, output_channel, stride, expand_ratio=t)) | ||||
|         input_channel = output_channel | ||||
|     # building last several layers | ||||
|     features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) | ||||
|     # make it nn.Sequential | ||||
|     self.features = nn.Sequential(*features) | ||||
|  | ||||
|     # building classifier | ||||
|     self.classifier = nn.Sequential( | ||||
|       nn.Dropout(dropout), | ||||
|       nn.Linear(self.last_channel, num_classes), | ||||
|     ) | ||||
|     self.message = 'MobileNetV2 : width_mult={:}, in-C={:}, last-C={:}, block={:}, dropout={:}'.format(width_mult, input_channel, last_channel, block_name, dropout) | ||||
|  | ||||
|     # weight initialization | ||||
|     self.apply( initialize_resnet ) | ||||
|  | ||||
|   def get_message(self): | ||||
|     return self.message | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     features = self.features(inputs) | ||||
|     vectors  = features.mean([2, 3]) | ||||
|     predicts = self.classifier(vectors) | ||||
|     return features, predicts | ||||
| @@ -110,8 +110,11 @@ def get_imagenet_models(config): | ||||
|   super_type = getattr(config, 'super_type', 'basic') | ||||
|   if super_type == 'basic': | ||||
|     from .ImagenetResNet import ResNet | ||||
|     from .ImageNet_MobileNetV2 import MobileNetV2 | ||||
|     if config.arch == 'resnet': | ||||
|       return ResNet(config.block_name, config.layers, config.deep_stem, config.class_num, config.zero_init_residual, config.groups, config.width_per_group) | ||||
|     elif config.arch == 'mobilenet_v2': | ||||
|       return MobileNetV2(config.class_num, config.width_multi, config.input_channel, config.last_channel, 'InvertedResidual', config.dropout) | ||||
|     else: | ||||
|       raise ValueError('invalid arch : {:}'.format( config.arch )) | ||||
|   elif super_type.startswith('infer'): # NAS searched architecture | ||||
|   | ||||
		Reference in New Issue
	
	Block a user