Add ImageNet_ResNet
This commit is contained in:
		
							
								
								
									
										172
									
								
								lib/models/ImageNet_ResNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										172
									
								
								lib/models/ImageNet_ResNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,172 @@ | |||||||
|  | # Deep Residual Learning for Image Recognition, CVPR 2016 | ||||||
|  | import torch.nn as nn | ||||||
|  | from .initialization import initialize_resnet | ||||||
|  |  | ||||||
|  | def conv3x3(in_planes, out_planes, stride=1, groups=1): | ||||||
|  |   return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def conv1x1(in_planes, out_planes, stride=1): | ||||||
|  |   return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class BasicBlock(nn.Module): | ||||||
|  |   expansion = 1 | ||||||
|  |  | ||||||
|  |   def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64): | ||||||
|  |     super(BasicBlock, self).__init__() | ||||||
|  |     if groups != 1 or base_width != 64: | ||||||
|  |       raise ValueError('BasicBlock only supports groups=1 and base_width=64') | ||||||
|  |     # Both self.conv1 and self.downsample layers downsample the input when stride != 1 | ||||||
|  |     self.conv1 = conv3x3(inplanes, planes, stride) | ||||||
|  |     self.bn1   = nn.BatchNorm2d(planes) | ||||||
|  |     self.relu  = nn.ReLU(inplace=True) | ||||||
|  |     self.conv2 = conv3x3(planes, planes) | ||||||
|  |     self.bn2   = nn.BatchNorm2d(planes) | ||||||
|  |     self.downsample = downsample | ||||||
|  |     self.stride = stride | ||||||
|  |  | ||||||
|  |   def forward(self, x): | ||||||
|  |     identity = x | ||||||
|  |  | ||||||
|  |     out = self.conv1(x) | ||||||
|  |     out = self.bn1(out) | ||||||
|  |     out = self.relu(out) | ||||||
|  |  | ||||||
|  |     out = self.conv2(out) | ||||||
|  |     out = self.bn2(out) | ||||||
|  |  | ||||||
|  |     if self.downsample is not None: | ||||||
|  |       identity = self.downsample(x) | ||||||
|  |  | ||||||
|  |     out += identity | ||||||
|  |     out = self.relu(out) | ||||||
|  |  | ||||||
|  |     return out | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class Bottleneck(nn.Module): | ||||||
|  |   expansion = 4 | ||||||
|  |  | ||||||
|  |   def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64): | ||||||
|  |     super(Bottleneck, self).__init__() | ||||||
|  |     width = int(planes * (base_width / 64.)) * groups | ||||||
|  |     # Both self.conv2 and self.downsample layers downsample the input when stride != 1 | ||||||
|  |     self.conv1 = conv1x1(inplanes, width) | ||||||
|  |     self.bn1   = nn.BatchNorm2d(width) | ||||||
|  |     self.conv2 = conv3x3(width, width, stride, groups) | ||||||
|  |     self.bn2   = nn.BatchNorm2d(width) | ||||||
|  |     self.conv3 = conv1x1(width, planes * self.expansion) | ||||||
|  |     self.bn3   = nn.BatchNorm2d(planes * self.expansion) | ||||||
|  |     self.relu  = nn.ReLU(inplace=True) | ||||||
|  |     self.downsample = downsample | ||||||
|  |     self.stride = stride | ||||||
|  |  | ||||||
|  |   def forward(self, x): | ||||||
|  |     identity = x | ||||||
|  |  | ||||||
|  |     out = self.conv1(x) | ||||||
|  |     out = self.bn1(out) | ||||||
|  |     out = self.relu(out) | ||||||
|  |  | ||||||
|  |     out = self.conv2(out) | ||||||
|  |     out = self.bn2(out) | ||||||
|  |     out = self.relu(out) | ||||||
|  |  | ||||||
|  |     out = self.conv3(out) | ||||||
|  |     out = self.bn3(out) | ||||||
|  |  | ||||||
|  |     if self.downsample is not None: | ||||||
|  |       identity = self.downsample(x) | ||||||
|  |  | ||||||
|  |     out += identity | ||||||
|  |     out = self.relu(out) | ||||||
|  |  | ||||||
|  |     return out | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class ResNet(nn.Module): | ||||||
|  |  | ||||||
|  |   def __init__(self, block_name, layers, deep_stem, num_classes, zero_init_residual, groups, width_per_group): | ||||||
|  |     super(ResNet, self).__init__() | ||||||
|  |  | ||||||
|  |     #planes = [int(width_per_group * groups * 2 ** i) for i in range(4)] | ||||||
|  |     if block_name == 'BasicBlock'  : block= BasicBlock | ||||||
|  |     elif block_name == 'Bottleneck': block= Bottleneck | ||||||
|  |     else                           : raise ValueError('invalid block-name : {:}'.format(block_name)) | ||||||
|  |  | ||||||
|  |     if not deep_stem: | ||||||
|  |       self.conv = nn.Sequential( | ||||||
|  |                    nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False), | ||||||
|  |                    nn.BatchNorm2d(64), nn.ReLU(inplace=True)) | ||||||
|  |     else: | ||||||
|  |       self.conv = nn.Sequential( | ||||||
|  |                    nn.Conv2d(           3, 32, kernel_size=3, stride=2, padding=1, bias=False), | ||||||
|  |                    nn.BatchNorm2d(32), nn.ReLU(inplace=True), | ||||||
|  |                    nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False), | ||||||
|  |                    nn.BatchNorm2d(32), nn.ReLU(inplace=True), | ||||||
|  |                    nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False), | ||||||
|  |                    nn.BatchNorm2d(64), nn.ReLU(inplace=True)) | ||||||
|  |     self.inplanes = 64 | ||||||
|  |     self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | ||||||
|  |     self.layer1 = self._make_layer(block, 64 , layers[0], stride=1, groups=groups, base_width=width_per_group) | ||||||
|  |     self.layer2 = self._make_layer(block, 128, layers[1], stride=2, groups=groups, base_width=width_per_group) | ||||||
|  |     self.layer3 = self._make_layer(block, 256, layers[2], stride=2, groups=groups, base_width=width_per_group) | ||||||
|  |     self.layer4 = self._make_layer(block, 512, layers[3], stride=2, groups=groups, base_width=width_per_group) | ||||||
|  |     self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | ||||||
|  |     self.fc      = nn.Linear(512 * block.expansion, num_classes) | ||||||
|  |     self.message = 'block = {:}, layers = {:}, deep_stem = {:}, num_classes = {:}'.format(block, layers, deep_stem, num_classes) | ||||||
|  |  | ||||||
|  |     self.apply( initialize_resnet ) | ||||||
|  |  | ||||||
|  |     # Zero-initialize the last BN in each residual branch, | ||||||
|  |     # so that the residual branch starts with zeros, and each residual block behaves like an identity. | ||||||
|  |     # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 | ||||||
|  |     if zero_init_residual: | ||||||
|  |       for m in self.modules(): | ||||||
|  |         if isinstance(m, Bottleneck): | ||||||
|  |           nn.init.constant_(m.bn3.weight, 0) | ||||||
|  |         elif isinstance(m, BasicBlock): | ||||||
|  |           nn.init.constant_(m.bn2.weight, 0) | ||||||
|  |  | ||||||
|  |   def _make_layer(self, block, planes, blocks, stride, groups, base_width): | ||||||
|  |     downsample = None | ||||||
|  |     if stride != 1 or self.inplanes != planes * block.expansion: | ||||||
|  |       if stride == 2: | ||||||
|  |         downsample = nn.Sequential( | ||||||
|  |           nn.AvgPool2d(kernel_size=2, stride=2, padding=0), | ||||||
|  |           conv1x1(self.inplanes, planes * block.expansion, 1), | ||||||
|  |           nn.BatchNorm2d(planes * block.expansion), | ||||||
|  |         ) | ||||||
|  |       elif stride == 1: | ||||||
|  |         downsample = nn.Sequential( | ||||||
|  |           conv1x1(self.inplanes, planes * block.expansion, stride), | ||||||
|  |           nn.BatchNorm2d(planes * block.expansion), | ||||||
|  |         ) | ||||||
|  |       else: raise ValueError('invalid stride [{:}] for downsample'.format(stride)) | ||||||
|  |  | ||||||
|  |     layers = [] | ||||||
|  |     layers.append(block(self.inplanes, planes, stride, downsample, groups, base_width)) | ||||||
|  |     self.inplanes = planes * block.expansion | ||||||
|  |     for _ in range(1, blocks): | ||||||
|  |       layers.append(block(self.inplanes, planes, 1, None, groups, base_width)) | ||||||
|  |  | ||||||
|  |     return nn.Sequential(*layers) | ||||||
|  |  | ||||||
|  |   def get_message(self): | ||||||
|  |     return self.message | ||||||
|  |  | ||||||
|  |   def forward(self, x): | ||||||
|  |     x = self.conv(x) | ||||||
|  |     x = self.maxpool(x) | ||||||
|  |  | ||||||
|  |     x = self.layer1(x) | ||||||
|  |     x = self.layer2(x) | ||||||
|  |     x = self.layer3(x) | ||||||
|  |     x = self.layer4(x) | ||||||
|  |  | ||||||
|  |     features = self.avgpool(x) | ||||||
|  |     features = features.view(features.size(0), -1) | ||||||
|  |     logits   = self.fc(features) | ||||||
|  |  | ||||||
|  |     return features, logits | ||||||
| @@ -109,7 +109,7 @@ def get_cifar_models(config, extra_path=None): | |||||||
| def get_imagenet_models(config): | def get_imagenet_models(config): | ||||||
|   super_type = getattr(config, 'super_type', 'basic') |   super_type = getattr(config, 'super_type', 'basic') | ||||||
|   if super_type == 'basic': |   if super_type == 'basic': | ||||||
|     from .ImagenetResNet import ResNet |     from .ImageNet_ResNet import ResNet | ||||||
|     from .ImageNet_MobileNetV2 import MobileNetV2 |     from .ImageNet_MobileNetV2 import MobileNetV2 | ||||||
|     if config.arch == 'resnet': |     if config.arch == 'resnet': | ||||||
|       return ResNet(config.block_name, config.layers, config.deep_stem, config.class_num, config.zero_init_residual, config.groups, config.width_per_group) |       return ResNet(config.block_name, config.layers, config.deep_stem, config.class_num, config.zero_init_residual, config.groups, config.width_per_group) | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user