Update Q models
This commit is contained in:
		
							
								
								
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -129,3 +129,4 @@ TEMP-L.sh | |||||||
| # Visual Studio Code | # Visual Studio Code | ||||||
| .vscode | .vscode | ||||||
| mlruns | mlruns | ||||||
|  | outputs | ||||||
|   | |||||||
| @@ -1,94 +0,0 @@ | |||||||
| ##################################################### |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # |  | ||||||
| ##################################################### |  | ||||||
| # Refer to: |  | ||||||
| # - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.ipynb |  | ||||||
| # - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.py |  | ||||||
| # python exps/trading/workflow_test.py |  | ||||||
| ##################################################### |  | ||||||
| import sys, site |  | ||||||
| from pathlib import Path |  | ||||||
|  |  | ||||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() |  | ||||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) |  | ||||||
|  |  | ||||||
| import qlib |  | ||||||
| import pandas as pd |  | ||||||
| from qlib.config import REG_CN |  | ||||||
| from qlib.contrib.model.gbdt import LGBModel |  | ||||||
| from qlib.contrib.data.handler import Alpha158 |  | ||||||
| from qlib.contrib.strategy.strategy import TopkDropoutStrategy |  | ||||||
| from qlib.contrib.evaluate import ( |  | ||||||
|     backtest as normal_backtest, |  | ||||||
|     risk_analysis, |  | ||||||
| ) |  | ||||||
| from qlib.utils import exists_qlib_data, init_instance_by_config |  | ||||||
| from qlib.workflow import R |  | ||||||
| from qlib.workflow.record_temp import SignalRecord, PortAnaRecord |  | ||||||
| from qlib.utils import flatten_dict |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # use default data |  | ||||||
| # NOTE: need to download data from remote: python scripts/get_data.py qlib_data_cn --target_dir ~/.qlib/qlib_data/cn_data |  | ||||||
| provider_uri = "~/.qlib/qlib_data/cn_data"  # target_dir |  | ||||||
| if not exists_qlib_data(provider_uri): |  | ||||||
|     print(f"Qlib data is not found in {provider_uri}") |  | ||||||
|     sys.path.append(str(scripts_dir)) |  | ||||||
|     from get_data import GetData |  | ||||||
|     GetData().qlib_data(target_dir=provider_uri, region=REG_CN) |  | ||||||
| qlib.init(provider_uri=provider_uri, region=REG_CN) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| market = "csi300" |  | ||||||
| benchmark = "SH000300" |  | ||||||
|  |  | ||||||
|  |  | ||||||
| ################################### |  | ||||||
| # train model |  | ||||||
| ################################### |  | ||||||
| data_handler_config = { |  | ||||||
|     "start_time": "2008-01-01", |  | ||||||
|     "end_time": "2020-08-01", |  | ||||||
|     "fit_start_time": "2008-01-01", |  | ||||||
|     "fit_end_time": "2014-12-31", |  | ||||||
|     "instruments": market, |  | ||||||
| } |  | ||||||
|  |  | ||||||
| task = { |  | ||||||
|     "model": { |  | ||||||
|         "class": "QuantTransformer", |  | ||||||
|         "module_path": "trade_models", |  | ||||||
|         "kwargs": { |  | ||||||
|             "loss": "mse", |  | ||||||
|             "GPU": "0", |  | ||||||
|             "metric": "loss", |  | ||||||
|         }, |  | ||||||
|     }, |  | ||||||
|     "dataset": { |  | ||||||
|         "class": "DatasetH", |  | ||||||
|         "module_path": "qlib.data.dataset", |  | ||||||
|         "kwargs": { |  | ||||||
|             "handler": { |  | ||||||
|                 "class": "Alpha158", |  | ||||||
|                 "module_path": "qlib.contrib.data.handler", |  | ||||||
|                 "kwargs": data_handler_config, |  | ||||||
|             }, |  | ||||||
|             "segments": { |  | ||||||
|                 "train": ("2008-01-01", "2014-12-31"), |  | ||||||
|                 "valid": ("2015-01-01", "2016-12-31"), |  | ||||||
|                 "test": ("2017-01-01", "2020-08-01"), |  | ||||||
|             }, |  | ||||||
|         }, |  | ||||||
|     }, |  | ||||||
| } |  | ||||||
|  |  | ||||||
| # model initiaiton |  | ||||||
| model = init_instance_by_config(task["model"]) |  | ||||||
| dataset = init_instance_by_config(task["dataset"]) |  | ||||||
|  |  | ||||||
| # start exp to train model |  | ||||||
| with R.start(experiment_name="train_model"): |  | ||||||
|     R.log_params(**flatten_dict(task)) |  | ||||||
|     model.fit(dataset) |  | ||||||
|     R.save_objects(trained_model=model) |  | ||||||
|     rid = R.get_recorder().id |  | ||||||
							
								
								
									
										100
									
								
								exps/trading/workflow_tt.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										100
									
								
								exps/trading/workflow_tt.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,100 @@ | |||||||
|  | ##################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||||
|  | ##################################################### | ||||||
|  | # Refer to: | ||||||
|  | # - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.ipynb | ||||||
|  | # - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.py | ||||||
|  | # python exps/trading/workflow_tt.py | ||||||
|  | ##################################################### | ||||||
|  | import sys, site, argparse | ||||||
|  | from pathlib import Path | ||||||
|  |  | ||||||
|  | lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||||
|  | if str(lib_dir) not in sys.path: | ||||||
|  |     sys.path.insert(0, str(lib_dir)) | ||||||
|  |  | ||||||
|  | import qlib | ||||||
|  | from qlib.config import C | ||||||
|  | import pandas as pd | ||||||
|  | from qlib.config import REG_CN | ||||||
|  | from qlib.contrib.model.gbdt import LGBModel | ||||||
|  | from qlib.contrib.data.handler import Alpha158 | ||||||
|  | from qlib.contrib.strategy.strategy import TopkDropoutStrategy | ||||||
|  | from qlib.contrib.evaluate import ( | ||||||
|  |     backtest as normal_backtest, | ||||||
|  |     risk_analysis, | ||||||
|  | ) | ||||||
|  | from qlib.utils import exists_qlib_data, init_instance_by_config | ||||||
|  | from qlib.workflow import R | ||||||
|  | from qlib.workflow.record_temp import SignalRecord, PortAnaRecord | ||||||
|  | from qlib.utils import flatten_dict | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def main(xargs): | ||||||
|  |     dataset_config = { | ||||||
|  |         "class": "DatasetH", | ||||||
|  |         "module_path": "qlib.data.dataset", | ||||||
|  |         "kwargs": { | ||||||
|  |             "handler": { | ||||||
|  |                 "class": "Alpha360", | ||||||
|  |                 "module_path": "qlib.contrib.data.handler", | ||||||
|  |                 "kwargs": { | ||||||
|  |                     "start_time": "2008-01-01", | ||||||
|  |                     "end_time": "2020-08-01", | ||||||
|  |                     "fit_start_time": "2008-01-01", | ||||||
|  |                     "fit_end_time": "2014-12-31", | ||||||
|  |                     "instruments": xargs.market, | ||||||
|  |                     "infer_processors": [ | ||||||
|  |                         {"class": "RobustZScoreNorm", "kwargs": {"fields_group": "feature", "clip_outlier": True}}, | ||||||
|  |                         {"class": "Fillna", "kwargs": {"fields_group": "feature"}}, | ||||||
|  |                     ], | ||||||
|  |                     "learn_processors": [ | ||||||
|  |                         {"class": "DropnaLabel"}, | ||||||
|  |                         {"class": "CSRankNorm", "kwargs": {"fields_group": "label"}}, | ||||||
|  |                     ], | ||||||
|  |                     "label": ["Ref($close, -2) / Ref($close, -1) - 1"], | ||||||
|  |                 }, | ||||||
|  |             }, | ||||||
|  |             "segments": { | ||||||
|  |                 "train": ("2008-01-01", "2014-12-31"), | ||||||
|  |                 "valid": ("2015-01-01", "2016-12-31"), | ||||||
|  |                 "test": ("2017-01-01", "2020-08-01"), | ||||||
|  |             }, | ||||||
|  |         }, | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     model_config = { | ||||||
|  |         "class": "QuantTransformer", | ||||||
|  |         "module_path": "trade_models", | ||||||
|  |         "kwargs": { | ||||||
|  |             "loss": "mse", | ||||||
|  |             "GPU": "0", | ||||||
|  |             "metric": "loss", | ||||||
|  |         }, | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     task = {"model": model_config, "dataset": dataset_config} | ||||||
|  |  | ||||||
|  |     model = init_instance_by_config(model_config) | ||||||
|  |     dataset = init_instance_by_config(dataset_config) | ||||||
|  |  | ||||||
|  |     # start exp to train model | ||||||
|  |     with R.start(experiment_name="train_tt_model"): | ||||||
|  |         R.log_params(**flatten_dict(task)) | ||||||
|  |         model.fit(dataset) | ||||||
|  |         R.save_objects(trained_model=model) | ||||||
|  |         rid = R.get_recorder().id | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == "__main__": | ||||||
|  |     parser = argparse.ArgumentParser("Vanilla Transformable Transformer") | ||||||
|  |     parser.add_argument("--save_dir", type=str, default="./outputs/tt-ml-runs", help="The checkpoint directory.") | ||||||
|  |     parser.add_argument("--market", type=str, default="csi300", help="The market indicator.") | ||||||
|  |     args = parser.parse_args() | ||||||
|  |  | ||||||
|  |     provider_uri = "~/.qlib/qlib_data/cn_data"  # target_dir | ||||||
|  |     exp_manager = C.exp_manager | ||||||
|  |     exp_manager["kwargs"]["uri"] = "file:{:}".format(Path(args.save_dir).resolve()) | ||||||
|  |     qlib.init(provider_uri=provider_uri, region=REG_CN, exp_manager=exp_manager) | ||||||
|  |  | ||||||
|  |     main(args) | ||||||
| @@ -1,2 +1,4 @@ | |||||||
| from .drop import DropBlock2d, DropPath | from .drop import DropBlock2d, DropPath | ||||||
| from .weight_init import trunc_normal_ | from .weight_init import trunc_normal_ | ||||||
|  |  | ||||||
|  | from .positional_embedding import PositionalEncoder | ||||||
|   | |||||||
							
								
								
									
										29
									
								
								lib/layers/positional_embedding.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										29
									
								
								lib/layers/positional_embedding.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,29 @@ | |||||||
|  | import torch | ||||||
|  | import torch.nn as nn | ||||||
|  | import math | ||||||
|  |  | ||||||
|  | class PositionalEncoder(nn.Module): | ||||||
|  |   # Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf | ||||||
|  |  | ||||||
|  |   def __init__(self, d_model, max_seq_len): | ||||||
|  |     super(PositionalEncoder, self).__init__() | ||||||
|  |     self.d_model = d_model | ||||||
|  |     # create constant 'pe' matrix with values dependant on  | ||||||
|  |     # pos and i | ||||||
|  |     pe = torch.zeros(max_seq_len, d_model) | ||||||
|  |     for pos in range(max_seq_len): | ||||||
|  |       for i in range(0, d_model): | ||||||
|  |         div = 10000 ** ((i // 2) * 2 / d_model) | ||||||
|  |         value = pos / div | ||||||
|  |         if i % 2 == 0: | ||||||
|  |           pe[pos, i] = math.sin(value) | ||||||
|  |         else: | ||||||
|  |           pe[pos, i] = math.cos(value) | ||||||
|  |     pe = pe.unsqueeze(0) | ||||||
|  |     self.register_buffer('pe', pe) | ||||||
|  |   | ||||||
|  |    | ||||||
|  |   def forward(self, x): | ||||||
|  |     batch, seq, fdim = x.shape[:3] | ||||||
|  |     embeddings = self.pe[:, :seq, :fdim] | ||||||
|  |     return x + embeddings | ||||||
| @@ -1,7 +1,6 @@ | |||||||
| # Copyright (c) Microsoft Corporation. | ################################################## | ||||||
| # Licensed under the MIT License. | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 # | ||||||
|  | ################################################## | ||||||
|  |  | ||||||
| from __future__ import division | from __future__ import division | ||||||
| from __future__ import print_function | from __future__ import print_function | ||||||
|  |  | ||||||
| @@ -26,7 +25,7 @@ import torch | |||||||
| import torch.nn as nn | import torch.nn as nn | ||||||
| import torch.optim as optim | import torch.optim as optim | ||||||
|  |  | ||||||
| from layers import DropPath, trunc_normal_ | import layers as xlayers | ||||||
|  |  | ||||||
| from qlib.model.base import Model | from qlib.model.base import Model | ||||||
| from qlib.data.dataset import DatasetH | from qlib.data.dataset import DatasetH | ||||||
| @@ -182,7 +181,6 @@ class QuantTransformer(Model): | |||||||
|     losses = [] |     losses = [] | ||||||
|  |  | ||||||
|     indices = np.arange(len(x_values)) |     indices = np.arange(len(x_values)) | ||||||
|     import pdb; pdb.set_trace() |  | ||||||
|  |  | ||||||
|     for i in range(len(indices))[:: self.batch_size]: |     for i in range(len(indices))[:: self.batch_size]: | ||||||
|  |  | ||||||
| @@ -261,6 +259,7 @@ class QuantTransformer(Model): | |||||||
|       torch.cuda.empty_cache() |       torch.cuda.empty_cache() | ||||||
|  |  | ||||||
|   def predict(self, dataset): |   def predict(self, dataset): | ||||||
|  |  | ||||||
|     if not self.fitted: |     if not self.fitted: | ||||||
|       raise ValueError("model is not fitted yet!") |       raise ValueError("model is not fitted yet!") | ||||||
|  |  | ||||||
| @@ -294,9 +293,9 @@ class QuantTransformer(Model): | |||||||
| # Real Model | # Real Model | ||||||
|  |  | ||||||
|  |  | ||||||
| class Mlp(nn.Module): | class MLP(nn.Module): | ||||||
|   def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |   def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | ||||||
|     super().__init__() |     super(MLP, self).__init__() | ||||||
|     out_features = out_features or in_features |     out_features = out_features or in_features | ||||||
|     hidden_features = hidden_features or in_features |     hidden_features = hidden_features or in_features | ||||||
|     self.fc1 = nn.Linear(in_features, hidden_features) |     self.fc1 = nn.Linear(in_features, hidden_features) | ||||||
| @@ -314,8 +313,9 @@ class Mlp(nn.Module): | |||||||
|  |  | ||||||
|  |  | ||||||
| class Attention(nn.Module): | class Attention(nn.Module): | ||||||
|  |  | ||||||
|   def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): |   def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | ||||||
|     super().__init__() |     super(Attention, self).__init__() | ||||||
|     self.num_heads = num_heads |     self.num_heads = num_heads | ||||||
|     head_dim = dim // num_heads |     head_dim = dim // num_heads | ||||||
|     # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights |     # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | ||||||
| @@ -345,15 +345,15 @@ class Block(nn.Module): | |||||||
|  |  | ||||||
|   def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |   def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | ||||||
|          drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): |          drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | ||||||
|     super().__init__() |     super(Block, self).__init__() | ||||||
|     self.norm1 = norm_layer(dim) |     self.norm1 = norm_layer(dim) | ||||||
|     self.attn = Attention( |     self.attn = Attention( | ||||||
|       dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |       dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | ||||||
|     # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here |     # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | ||||||
|     self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |     self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0. else nn.Identity() | ||||||
|     self.norm2 = norm_layer(dim) |     self.norm2 = norm_layer(dim) | ||||||
|     mlp_hidden_dim = int(dim * mlp_ratio) |     mlp_hidden_dim = int(dim * mlp_ratio) | ||||||
|     self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |     self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | ||||||
|  |  | ||||||
|   def forward(self, x): |   def forward(self, x): | ||||||
|     x = x + self.drop_path(self.attn(self.norm1(x))) |     x = x + self.drop_path(self.attn(self.norm1(x))) | ||||||
| @@ -365,19 +365,18 @@ class SimpleEmbed(nn.Module): | |||||||
|  |  | ||||||
|   def __init__(self, d_feat, embed_dim): |   def __init__(self, d_feat, embed_dim): | ||||||
|     super(SimpleEmbed, self).__init__() |     super(SimpleEmbed, self).__init__() | ||||||
|  |     self.d_feat = d_feat | ||||||
|     self.proj = nn.Linear(d_feat, embed_dim) |     self.proj = nn.Linear(d_feat, embed_dim) | ||||||
|  |  | ||||||
|   def forward(self, x): |   def forward(self, x): | ||||||
|     import pdb; pdb.set_trace() |     x = x.reshape(len(x), self.d_feat, -1)  # [N, F*T] -> [N, F, T] | ||||||
|     B, C, H, W = x.shape |     x = x.permute(0, 2, 1)                  # [N, F, T] -> [N, T, F] | ||||||
|     # FIXME look at relaxing size constraints |     out = self.proj(x) | ||||||
|     assert H == self.img_size[0] and W == self.img_size[1], \ |     return out | ||||||
|       f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |  | ||||||
|     x = self.proj(x).flatten(2).transpose(1, 2) |  | ||||||
|     return x |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class TransformerModel(nn.Module): | class TransformerModel(nn.Module): | ||||||
|  |  | ||||||
|   def __init__(self, |   def __init__(self, | ||||||
|          d_feat: int, |          d_feat: int, | ||||||
|          embed_dim: int = 64, |          embed_dim: int = 64, | ||||||
| @@ -408,11 +407,9 @@ class TransformerModel(nn.Module): | |||||||
|  |  | ||||||
|     self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim) |     self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim) | ||||||
|  |  | ||||||
|     """ |  | ||||||
|     self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |     self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | ||||||
|     self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |     self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65) | ||||||
|     self.pos_drop = nn.Dropout(p=drop_rate) |     self.pos_drop = nn.Dropout(p=drop_rate) | ||||||
|     """ |  | ||||||
|  |  | ||||||
|     dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule |     dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule | ||||||
|     self.blocks = nn.ModuleList([ |     self.blocks = nn.ModuleList([ | ||||||
| @@ -425,15 +422,12 @@ class TransformerModel(nn.Module): | |||||||
|     # regression head |     # regression head | ||||||
|     self.head = nn.Linear(self.num_features, 1) |     self.head = nn.Linear(self.num_features, 1) | ||||||
|  |  | ||||||
|     """ |     xlayers.trunc_normal_(self.cls_token, std=.02) | ||||||
|     trunc_normal_(self.pos_embed, std=.02) |  | ||||||
|     trunc_normal_(self.cls_token, std=.02) |  | ||||||
|     """ |  | ||||||
|     self.apply(self._init_weights) |     self.apply(self._init_weights) | ||||||
|  |  | ||||||
|   def _init_weights(self, m): |   def _init_weights(self, m): | ||||||
|     if isinstance(m, nn.Linear): |     if isinstance(m, nn.Linear): | ||||||
|       trunc_normal_(m.weight, std=.02) |       xlayers.trunc_normal_(m.weight, std=.02) | ||||||
|       if isinstance(m, nn.Linear) and m.bias is not None: |       if isinstance(m, nn.Linear) and m.bias is not None: | ||||||
|         nn.init.constant_(m.bias, 0) |         nn.init.constant_(m.bias, 0) | ||||||
|     elif isinstance(m, nn.LayerNorm): |     elif isinstance(m, nn.LayerNorm): | ||||||
| @@ -441,21 +435,22 @@ class TransformerModel(nn.Module): | |||||||
|       nn.init.constant_(m.weight, 1.0) |       nn.init.constant_(m.weight, 1.0) | ||||||
|  |  | ||||||
|   def forward_features(self, x): |   def forward_features(self, x): | ||||||
|     B = x.shape[0] |     batch, flatten_size = x.shape | ||||||
|     x = self.input_embed(x) |     feats = self.input_embed(x)  # batch * 60 * 64 | ||||||
|  |  | ||||||
|     cls_tokens = self.cls_token.expand(B, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks |     cls_tokens = self.cls_token.expand(batch, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks | ||||||
|     x = torch.cat((cls_tokens, x), dim=1) |     feats_w_ct = torch.cat((cls_tokens, feats), dim=1) | ||||||
|     x = x + self.pos_embed |     feats_w_tp = self.pos_embed(feats_w_ct) | ||||||
|     x = self.pos_drop(x) |     feats_w_tp = self.pos_drop(feats_w_tp) | ||||||
|  |  | ||||||
|     for blk in self.blocks: |     xfeats = feats_w_tp | ||||||
|       x = blk(x) |     for block in self.blocks: | ||||||
|  |       xfeats = block(xfeats) | ||||||
|  |  | ||||||
|     x = self.norm(x)[:, 0] |     xfeats = self.norm(xfeats)[:, 0] | ||||||
|     return x |     return xfeats | ||||||
|  |  | ||||||
|   def forward(self, x): |   def forward(self, x): | ||||||
|     x = self.forward_features(x) |     feats = self.forward_features(x) | ||||||
|     x = self.head(x) |     predicts = self.head(feats).squeeze(-1) | ||||||
|     return x |     return predicts | ||||||
|   | |||||||
| @@ -1,41 +1,75 @@ | |||||||
| import os | import os | ||||||
| import sys | import sys | ||||||
| import qlib | import ruamel.yaml as yaml | ||||||
| import pprint | import pprint | ||||||
| import numpy as np | import numpy as np | ||||||
| import pandas as pd | import pandas as pd | ||||||
|  | from pathlib import Path | ||||||
|  |  | ||||||
|  | import qlib | ||||||
| from qlib import config as qconfig | from qlib import config as qconfig | ||||||
| from qlib.utils import init_instance_by_config | from qlib.utils import init_instance_by_config | ||||||
|  | from qlib.workflow import R | ||||||
|  | from qlib.data.dataset import DatasetH | ||||||
|  | from qlib.data.dataset.handler import DataHandlerLP | ||||||
|  |  | ||||||
| qlib.init(provider_uri='~/.qlib/qlib_data/cn_data', region=qconfig.REG_CN) | qlib.init(provider_uri="~/.qlib/qlib_data/cn_data", region=qconfig.REG_CN) | ||||||
|  |  | ||||||
| dataset_config = { | dataset_config = { | ||||||
|             "class": "DatasetH", |     "class": "DatasetH", | ||||||
|             "module_path": "qlib.data.dataset", |     "module_path": "qlib.data.dataset", | ||||||
|  |     "kwargs": { | ||||||
|  |         "handler": { | ||||||
|  |             "class": "Alpha360", | ||||||
|  |             "module_path": "qlib.contrib.data.handler", | ||||||
|             "kwargs": { |             "kwargs": { | ||||||
|                 "handler": { |                 "start_time": "2008-01-01", | ||||||
|                     "class": "Alpha158", |                 "end_time": "2020-08-01", | ||||||
|                     "module_path": "qlib.contrib.data.handler", |                 "fit_start_time": "2008-01-01", | ||||||
|                     "kwargs": { |                 "fit_end_time": "2014-12-31", | ||||||
|                         "start_time": "2008-01-01", |                 "instruments": "csi300", | ||||||
|                         "end_time": "2020-08-01", |                 "infer_processors": [ | ||||||
|                         "fit_start_time": "2008-01-01", |                     {"class": "RobustZScoreNorm", "kwargs": {"fields_group": "feature", "clip_outlier": True}}, | ||||||
|                         "fit_end_time": "2014-12-31", |                     {"class": "Fillna", "kwargs": {"fields_group": "feature"}}, | ||||||
|                         "instruments": "csi300", |                 ], | ||||||
|                     }, |                 "learn_processors": [ | ||||||
|                 }, |                     {"class": "DropnaLabel"}, | ||||||
|                 "segments": { |                     {"class": "CSRankNorm", "kwargs": {"fields_group": "label"}}, | ||||||
|                     "train": ("2008-01-01", "2014-12-31"), |                 ], | ||||||
|                     "valid": ("2015-01-01", "2016-12-31"), |                "label": ["Ref($close, -2) / Ref($close, -1) - 1"] | ||||||
|                     "test": ("2017-01-01", "2020-08-01"), |  | ||||||
|                 }, |  | ||||||
|             }, |             }, | ||||||
|         } |         }, | ||||||
|  |         "segments": { | ||||||
|  |             "train": ("2008-01-01", "2014-12-31"), | ||||||
|  |             "valid": ("2015-01-01", "2016-12-31"), | ||||||
|  |             "test": ("2017-01-01", "2020-08-01"), | ||||||
|  |         }, | ||||||
|  |     }, | ||||||
|  | } | ||||||
|  |  | ||||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||||
|   dataset = init_instance_by_config(dataset_config) |  | ||||||
|   pprint.pprint(dataset_config) |     qlib_root_dir = (Path(__file__).parent / '..' / '..' / '.latent-data' / 'qlib').resolve() | ||||||
|   pprint.pprint(dataset) |     demo_yaml_path = qlib_root_dir / 'examples' / 'benchmarks' / 'GRU' / 'workflow_config_gru_Alpha360.yaml' | ||||||
|   import pdb; pdb.set_trace() |     print('Demo-workflow-yaml: {:}'.format(demo_yaml_path)) | ||||||
|   print('Complete') |     with open(demo_yaml_path, 'r') as fp: | ||||||
|  |       config = yaml.safe_load(fp) | ||||||
|  |     pprint.pprint(config['task']['dataset']) | ||||||
|  |      | ||||||
|  |     dataset = init_instance_by_config(dataset_config) | ||||||
|  |     pprint.pprint(dataset_config) | ||||||
|  |     pprint.pprint(dataset) | ||||||
|  |  | ||||||
|  |     df_train, df_valid, df_test = dataset.prepare( | ||||||
|  |         ["train", "valid", "test"], | ||||||
|  |         col_set=["feature", "label"], | ||||||
|  |         data_key=DataHandlerLP.DK_L, | ||||||
|  |     ) | ||||||
|  |  | ||||||
|  |     x_train, y_train = df_train["feature"], df_train["label"] | ||||||
|  |  | ||||||
|  |     import pdb | ||||||
|  |  | ||||||
|  |     pdb.set_trace() | ||||||
|  |     print("Complete") | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user