Use black for lib/models
This commit is contained in:
		| @@ -2,27 +2,32 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # The macro structure is defined in NAS-Bench-201 | ||||
| from .search_model_darts    import TinyNetworkDarts | ||||
| from .search_model_gdas     import TinyNetworkGDAS | ||||
| from .search_model_setn     import TinyNetworkSETN | ||||
| from .search_model_enas     import TinyNetworkENAS | ||||
| from .search_model_random   import TinyNetworkRANDOM | ||||
| from .generic_model         import GenericNAS201Model | ||||
| from .genotypes             import Structure as CellStructure, architectures as CellArchitectures | ||||
| from .search_model_darts import TinyNetworkDarts | ||||
| from .search_model_gdas import TinyNetworkGDAS | ||||
| from .search_model_setn import TinyNetworkSETN | ||||
| from .search_model_enas import TinyNetworkENAS | ||||
| from .search_model_random import TinyNetworkRANDOM | ||||
| from .generic_model import GenericNAS201Model | ||||
| from .genotypes import Structure as CellStructure, architectures as CellArchitectures | ||||
|  | ||||
| # NASNet-based macro structure | ||||
| from .search_model_gdas_nasnet import NASNetworkGDAS | ||||
| from .search_model_gdas_frc_nasnet import NASNetworkGDAS_FRC | ||||
| from .search_model_darts_nasnet import NASNetworkDARTS | ||||
|  | ||||
|  | ||||
| nas201_super_nets = {'DARTS-V1': TinyNetworkDarts, | ||||
|                      "DARTS-V2": TinyNetworkDarts, | ||||
|                      "GDAS": TinyNetworkGDAS, | ||||
|                      "SETN": TinyNetworkSETN, | ||||
|                      "ENAS": TinyNetworkENAS, | ||||
|                      "RANDOM": TinyNetworkRANDOM, | ||||
|                      "generic": GenericNAS201Model} | ||||
| nas201_super_nets = { | ||||
|     "DARTS-V1": TinyNetworkDarts, | ||||
|     "DARTS-V2": TinyNetworkDarts, | ||||
|     "GDAS": TinyNetworkGDAS, | ||||
|     "SETN": TinyNetworkSETN, | ||||
|     "ENAS": TinyNetworkENAS, | ||||
|     "RANDOM": TinyNetworkRANDOM, | ||||
|     "generic": GenericNAS201Model, | ||||
| } | ||||
|  | ||||
| nasnet_super_nets = {"GDAS": NASNetworkGDAS, | ||||
|                      "GDAS_FRC": NASNetworkGDAS_FRC, | ||||
|                      "DARTS": NASNetworkDARTS} | ||||
| nasnet_super_nets = { | ||||
|     "GDAS": NASNetworkGDAS, | ||||
|     "GDAS_FRC": NASNetworkGDAS_FRC, | ||||
|     "DARTS": NASNetworkDARTS, | ||||
| } | ||||
|   | ||||
| @@ -4,9 +4,11 @@ | ||||
| import torch | ||||
| from search_model_enas_utils import Controller | ||||
|  | ||||
| def main(): | ||||
|   controller = Controller(6, 4) | ||||
|   predictions = controller() | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   main() | ||||
| def main(): | ||||
|     controller = Controller(6, 4) | ||||
|     predictions = controller() | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     main() | ||||
|   | ||||
| @@ -8,296 +8,355 @@ from typing import Text | ||||
| from torch.distributions.categorical import Categorical | ||||
|  | ||||
| from ..cell_operations import ResNetBasicblock, drop_path | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
|  | ||||
|  | ||||
| class Controller(nn.Module): | ||||
|   # we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py | ||||
|   def __init__(self, edge2index, op_names, max_nodes, lstm_size=32, lstm_num_layers=2, tanh_constant=2.5, temperature=5.0): | ||||
|     super(Controller, self).__init__() | ||||
|     # assign the attributes | ||||
|     self.max_nodes = max_nodes | ||||
|     self.num_edge  = len(edge2index) | ||||
|     self.edge2index = edge2index | ||||
|     self.num_ops   = len(op_names) | ||||
|     self.op_names  = op_names | ||||
|     self.lstm_size = lstm_size | ||||
|     self.lstm_N    = lstm_num_layers | ||||
|     self.tanh_constant = tanh_constant | ||||
|     self.temperature   = temperature | ||||
|     # create parameters | ||||
|     self.register_parameter('input_vars', nn.Parameter(torch.Tensor(1, 1, lstm_size))) | ||||
|     self.w_lstm = nn.LSTM(input_size=self.lstm_size, hidden_size=self.lstm_size, num_layers=self.lstm_N) | ||||
|     self.w_embd = nn.Embedding(self.num_ops, self.lstm_size) | ||||
|     self.w_pred = nn.Linear(self.lstm_size, self.num_ops) | ||||
|     # we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py | ||||
|     def __init__( | ||||
|         self, | ||||
|         edge2index, | ||||
|         op_names, | ||||
|         max_nodes, | ||||
|         lstm_size=32, | ||||
|         lstm_num_layers=2, | ||||
|         tanh_constant=2.5, | ||||
|         temperature=5.0, | ||||
|     ): | ||||
|         super(Controller, self).__init__() | ||||
|         # assign the attributes | ||||
|         self.max_nodes = max_nodes | ||||
|         self.num_edge = len(edge2index) | ||||
|         self.edge2index = edge2index | ||||
|         self.num_ops = len(op_names) | ||||
|         self.op_names = op_names | ||||
|         self.lstm_size = lstm_size | ||||
|         self.lstm_N = lstm_num_layers | ||||
|         self.tanh_constant = tanh_constant | ||||
|         self.temperature = temperature | ||||
|         # create parameters | ||||
|         self.register_parameter( | ||||
|             "input_vars", nn.Parameter(torch.Tensor(1, 1, lstm_size)) | ||||
|         ) | ||||
|         self.w_lstm = nn.LSTM( | ||||
|             input_size=self.lstm_size, | ||||
|             hidden_size=self.lstm_size, | ||||
|             num_layers=self.lstm_N, | ||||
|         ) | ||||
|         self.w_embd = nn.Embedding(self.num_ops, self.lstm_size) | ||||
|         self.w_pred = nn.Linear(self.lstm_size, self.num_ops) | ||||
|  | ||||
|     nn.init.uniform_(self.input_vars         , -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_embd.weight      , -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_pred.weight      , -0.1, 0.1) | ||||
|         nn.init.uniform_(self.input_vars, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_embd.weight, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_pred.weight, -0.1, 0.1) | ||||
|  | ||||
|   def convert_structure(self, _arch): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op_index = _arch[self.edge2index[node_str]] | ||||
|         op_name  = self.op_names[op_index] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure(genotypes) | ||||
|     def convert_structure(self, _arch): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 op_index = _arch[self.edge2index[node_str]] | ||||
|                 op_name = self.op_names[op_index] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|   def forward(self): | ||||
|     def forward(self): | ||||
|  | ||||
|     inputs, h0 = self.input_vars, None | ||||
|     log_probs, entropys, sampled_arch = [], [], [] | ||||
|     for iedge in range(self.num_edge): | ||||
|       outputs, h0 = self.w_lstm(inputs, h0) | ||||
|        | ||||
|       logits = self.w_pred(outputs) | ||||
|       logits = logits / self.temperature | ||||
|       logits = self.tanh_constant * torch.tanh(logits) | ||||
|       # distribution | ||||
|       op_distribution = Categorical(logits=logits) | ||||
|       op_index    = op_distribution.sample() | ||||
|       sampled_arch.append( op_index.item() ) | ||||
|         inputs, h0 = self.input_vars, None | ||||
|         log_probs, entropys, sampled_arch = [], [], [] | ||||
|         for iedge in range(self.num_edge): | ||||
|             outputs, h0 = self.w_lstm(inputs, h0) | ||||
|  | ||||
|       op_log_prob = op_distribution.log_prob(op_index) | ||||
|       log_probs.append( op_log_prob.view(-1) ) | ||||
|       op_entropy  = op_distribution.entropy() | ||||
|       entropys.append( op_entropy.view(-1) ) | ||||
|        | ||||
|       # obtain the input embedding for the next step | ||||
|       inputs = self.w_embd(op_index) | ||||
|     return torch.sum(torch.cat(log_probs)), torch.sum(torch.cat(entropys)), self.convert_structure(sampled_arch) | ||||
|             logits = self.w_pred(outputs) | ||||
|             logits = logits / self.temperature | ||||
|             logits = self.tanh_constant * torch.tanh(logits) | ||||
|             # distribution | ||||
|             op_distribution = Categorical(logits=logits) | ||||
|             op_index = op_distribution.sample() | ||||
|             sampled_arch.append(op_index.item()) | ||||
|  | ||||
|             op_log_prob = op_distribution.log_prob(op_index) | ||||
|             log_probs.append(op_log_prob.view(-1)) | ||||
|             op_entropy = op_distribution.entropy() | ||||
|             entropys.append(op_entropy.view(-1)) | ||||
|  | ||||
|             # obtain the input embedding for the next step | ||||
|             inputs = self.w_embd(op_index) | ||||
|         return ( | ||||
|             torch.sum(torch.cat(log_probs)), | ||||
|             torch.sum(torch.cat(entropys)), | ||||
|             self.convert_structure(sampled_arch), | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class GenericNAS201Model(nn.Module): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(GenericNAS201Model, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self._max_nodes = max_nodes | ||||
|         self._stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self._cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self._cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self._op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self._cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential( | ||||
|             nn.BatchNorm2d( | ||||
|                 C_prev, affine=affine, track_running_stats=track_running_stats | ||||
|             ), | ||||
|             nn.ReLU(inplace=True), | ||||
|         ) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self._num_edge = num_edge | ||||
|         # algorithm related | ||||
|         self.arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self._mode = None | ||||
|         self.dynamic_cell = None | ||||
|         self._tau = None | ||||
|         self._algo = None | ||||
|         self._drop_path = None | ||||
|         self.verbose = False | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats): | ||||
|     super(GenericNAS201Model, self).__init__() | ||||
|     self._C          = C | ||||
|     self._layerN     = N | ||||
|     self._max_nodes  = max_nodes | ||||
|     self._stem       = nn.Sequential( | ||||
|                          nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                          nn.BatchNorm2d(C)) | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self._cells      = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self._cells.append(cell) | ||||
|       C_prev = cell.out_dim | ||||
|     self._op_names   = deepcopy(search_space) | ||||
|     self._Layer      = len(self._cells) | ||||
|     self.edge2index  = edge2index | ||||
|     self.lastact     = nn.Sequential(nn.BatchNorm2d(C_prev, affine=affine, track_running_stats=track_running_stats), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier  = nn.Linear(C_prev, num_classes) | ||||
|     self._num_edge   = num_edge | ||||
|     # algorithm related | ||||
|     self.arch_parameters = nn.Parameter(1e-3*torch.randn(num_edge, len(search_space))) | ||||
|     self._mode        = None | ||||
|     self.dynamic_cell = None | ||||
|     self._tau         = None | ||||
|     self._algo        = None | ||||
|     self._drop_path   = None | ||||
|     self.verbose      = False | ||||
|  | ||||
|   def set_algo(self, algo: Text): | ||||
|     # used for searching | ||||
|     assert self._algo is None, 'This functioin can only be called once.' | ||||
|     self._algo = algo | ||||
|     if algo == 'enas': | ||||
|       self.controller = Controller(self.edge2index, self._op_names, self._max_nodes) | ||||
|     else: | ||||
|       self.arch_parameters = nn.Parameter( 1e-3*torch.randn(self._num_edge, len(self._op_names)) ) | ||||
|       if algo == 'gdas': | ||||
|         self._tau         = 10 | ||||
|      | ||||
|   def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|     assert mode in ['gdas', 'enas', 'urs', 'joint', 'select', 'dynamic'] | ||||
|     self._mode = mode | ||||
|     if mode == 'dynamic': self.dynamic_cell = deepcopy(dynamic_cell) | ||||
|     else                : self.dynamic_cell = None | ||||
|  | ||||
|   def set_drop_path(self, progress, drop_path_rate): | ||||
|     if drop_path_rate is None: | ||||
|       self._drop_path = None | ||||
|     elif progress is None: | ||||
|       self._drop_path = drop_path_rate | ||||
|     else: | ||||
|       self._drop_path = progress * drop_path_rate | ||||
|  | ||||
|   @property | ||||
|   def mode(self): | ||||
|     return self._mode | ||||
|  | ||||
|   @property | ||||
|   def drop_path(self): | ||||
|     return self._drop_path | ||||
|  | ||||
|   @property | ||||
|   def weights(self): | ||||
|     xlist = list(self._stem.parameters()) | ||||
|     xlist+= list(self._cells.parameters()) | ||||
|     xlist+= list(self.lastact.parameters()) | ||||
|     xlist+= list(self.global_pooling.parameters()) | ||||
|     xlist+= list(self.classifier.parameters()) | ||||
|     return xlist | ||||
|  | ||||
|   def set_tau(self, tau): | ||||
|     self._tau = tau | ||||
|  | ||||
|   @property | ||||
|   def tau(self): | ||||
|     return self._tau | ||||
|  | ||||
|   @property | ||||
|   def alphas(self): | ||||
|     if self._algo == 'enas': | ||||
|       return list(self.controller.parameters()) | ||||
|     else: | ||||
|       return [self.arch_parameters] | ||||
|  | ||||
|   @property | ||||
|   def message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self._cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self._cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       if self._algo == 'enas': | ||||
|         return 'w_pred :\n{:}'.format(self.controller.w_pred.weight) | ||||
|       else: | ||||
|         return 'arch-parameters :\n{:}'.format(nn.functional.softmax(self.arch_parameters, dim=-1).cpu()) | ||||
|            | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={_max_nodes}, N={_layerN}, L={_Layer}, alg={_algo})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   @property | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self._max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self._op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append(tuple(xlist)) | ||||
|     return Structure(genotypes) | ||||
|  | ||||
|   def dync_genotype(self, use_random=False): | ||||
|     genotypes = [] | ||||
|     with torch.no_grad(): | ||||
|       alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     for i in range(1, self._max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         if use_random: | ||||
|           op_name  = random.choice(self._op_names) | ||||
|     def set_algo(self, algo: Text): | ||||
|         # used for searching | ||||
|         assert self._algo is None, "This functioin can only be called once." | ||||
|         self._algo = algo | ||||
|         if algo == "enas": | ||||
|             self.controller = Controller( | ||||
|                 self.edge2index, self._op_names, self._max_nodes | ||||
|             ) | ||||
|         else: | ||||
|           weights  = alphas_cpu[ self.edge2index[node_str] ] | ||||
|           op_index = torch.multinomial(weights, 1).item() | ||||
|           op_name  = self._op_names[ op_index ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append(tuple(xlist)) | ||||
|     return Structure(genotypes) | ||||
|             self.arch_parameters = nn.Parameter( | ||||
|                 1e-3 * torch.randn(self._num_edge, len(self._op_names)) | ||||
|             ) | ||||
|             if algo == "gdas": | ||||
|                 self._tau = 10 | ||||
|  | ||||
|   def get_log_prob(self, arch): | ||||
|     with torch.no_grad(): | ||||
|       logits = nn.functional.log_softmax(self.arch_parameters, dim=-1) | ||||
|     select_logits = [] | ||||
|     for i, node_info in enumerate(arch.nodes): | ||||
|       for op, xin in node_info: | ||||
|         node_str = '{:}<-{:}'.format(i+1, xin) | ||||
|         op_index = self._op_names.index(op) | ||||
|         select_logits.append( logits[self.edge2index[node_str], op_index] ) | ||||
|     return sum(select_logits).item() | ||||
|     def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|         assert mode in ["gdas", "enas", "urs", "joint", "select", "dynamic"] | ||||
|         self._mode = mode | ||||
|         if mode == "dynamic": | ||||
|             self.dynamic_cell = deepcopy(dynamic_cell) | ||||
|         else: | ||||
|             self.dynamic_cell = None | ||||
|  | ||||
|   def return_topK(self, K, use_random=False): | ||||
|     archs = Structure.gen_all(self._op_names, self._max_nodes, False) | ||||
|     pairs = [(self.get_log_prob(arch), arch) for arch in archs] | ||||
|     if K < 0 or K >= len(archs): K = len(archs) | ||||
|     if use_random: | ||||
|       return random.sample(archs, K) | ||||
|     else: | ||||
|       sorted_pairs = sorted(pairs, key=lambda x: -x[0]) | ||||
|       return_pairs = [sorted_pairs[_][1] for _ in range(K)] | ||||
|       return return_pairs | ||||
|     def set_drop_path(self, progress, drop_path_rate): | ||||
|         if drop_path_rate is None: | ||||
|             self._drop_path = None | ||||
|         elif progress is None: | ||||
|             self._drop_path = drop_path_rate | ||||
|         else: | ||||
|             self._drop_path = progress * drop_path_rate | ||||
|  | ||||
|   def normalize_archp(self): | ||||
|     if self.mode == 'gdas': | ||||
|       while True: | ||||
|         gumbels = -torch.empty_like(self.arch_parameters).exponential_().log() | ||||
|         logits  = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau | ||||
|         probs   = nn.functional.softmax(logits, dim=1) | ||||
|         index   = probs.max(-1, keepdim=True)[1] | ||||
|         one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|         hardwts = one_h - probs.detach() + probs | ||||
|         if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): | ||||
|           continue | ||||
|         else: break | ||||
|       with torch.no_grad(): | ||||
|         hardwts_cpu = hardwts.detach().cpu() | ||||
|       return hardwts, hardwts_cpu, index, 'GUMBEL' | ||||
|     else: | ||||
|       alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|       index   = alphas.max(-1, keepdim=True)[1] | ||||
|       with torch.no_grad(): | ||||
|         alphas_cpu = alphas.detach().cpu() | ||||
|       return alphas, alphas_cpu, index, 'SOFTMAX' | ||||
|     @property | ||||
|     def mode(self): | ||||
|         return self._mode | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     alphas, alphas_cpu, index, verbose_str = self.normalize_archp() | ||||
|     feature = self._stem(inputs) | ||||
|     for i, cell in enumerate(self._cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         if self.mode == 'urs': | ||||
|           feature = cell.forward_urs(feature) | ||||
|           if self.verbose: | ||||
|             verbose_str += '-forward_urs' | ||||
|         elif self.mode == 'select': | ||||
|           feature = cell.forward_select(feature, alphas_cpu) | ||||
|           if self.verbose: | ||||
|             verbose_str += '-forward_select' | ||||
|         elif self.mode == 'joint': | ||||
|           feature = cell.forward_joint(feature, alphas) | ||||
|           if self.verbose: | ||||
|             verbose_str += '-forward_joint' | ||||
|         elif self.mode == 'dynamic': | ||||
|           feature = cell.forward_dynamic(feature, self.dynamic_cell) | ||||
|           if self.verbose: | ||||
|             verbose_str += '-forward_dynamic' | ||||
|         elif self.mode == 'gdas': | ||||
|           feature = cell.forward_gdas(feature, alphas, index) | ||||
|           if self.verbose: | ||||
|             verbose_str += '-forward_gdas' | ||||
|         else: raise ValueError('invalid mode={:}'.format(self.mode)) | ||||
|       else: feature = cell(feature) | ||||
|       if self.drop_path is not None: | ||||
|         feature = drop_path(feature, self.drop_path) | ||||
|     if self.verbose and random.random() < 0.001: | ||||
|       print(verbose_str) | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling(out) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|     return out, logits | ||||
|     @property | ||||
|     def drop_path(self): | ||||
|         return self._drop_path | ||||
|  | ||||
|     @property | ||||
|     def weights(self): | ||||
|         xlist = list(self._stem.parameters()) | ||||
|         xlist += list(self._cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) | ||||
|         xlist += list(self.global_pooling.parameters()) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|     def set_tau(self, tau): | ||||
|         self._tau = tau | ||||
|  | ||||
|     @property | ||||
|     def tau(self): | ||||
|         return self._tau | ||||
|  | ||||
|     @property | ||||
|     def alphas(self): | ||||
|         if self._algo == "enas": | ||||
|             return list(self.controller.parameters()) | ||||
|         else: | ||||
|             return [self.arch_parameters] | ||||
|  | ||||
|     @property | ||||
|     def message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self._cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self._cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             if self._algo == "enas": | ||||
|                 return "w_pred :\n{:}".format(self.controller.w_pred.weight) | ||||
|             else: | ||||
|                 return "arch-parameters :\n{:}".format( | ||||
|                     nn.functional.softmax(self.arch_parameters, dim=-1).cpu() | ||||
|                 ) | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={_max_nodes}, N={_layerN}, L={_Layer}, alg={_algo})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     @property | ||||
|     def genotype(self): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self._max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 with torch.no_grad(): | ||||
|                     weights = self.arch_parameters[self.edge2index[node_str]] | ||||
|                     op_name = self._op_names[weights.argmax().item()] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def dync_genotype(self, use_random=False): | ||||
|         genotypes = [] | ||||
|         with torch.no_grad(): | ||||
|             alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|         for i in range(1, self._max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 if use_random: | ||||
|                     op_name = random.choice(self._op_names) | ||||
|                 else: | ||||
|                     weights = alphas_cpu[self.edge2index[node_str]] | ||||
|                     op_index = torch.multinomial(weights, 1).item() | ||||
|                     op_name = self._op_names[op_index] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def get_log_prob(self, arch): | ||||
|         with torch.no_grad(): | ||||
|             logits = nn.functional.log_softmax(self.arch_parameters, dim=-1) | ||||
|         select_logits = [] | ||||
|         for i, node_info in enumerate(arch.nodes): | ||||
|             for op, xin in node_info: | ||||
|                 node_str = "{:}<-{:}".format(i + 1, xin) | ||||
|                 op_index = self._op_names.index(op) | ||||
|                 select_logits.append(logits[self.edge2index[node_str], op_index]) | ||||
|         return sum(select_logits).item() | ||||
|  | ||||
|     def return_topK(self, K, use_random=False): | ||||
|         archs = Structure.gen_all(self._op_names, self._max_nodes, False) | ||||
|         pairs = [(self.get_log_prob(arch), arch) for arch in archs] | ||||
|         if K < 0 or K >= len(archs): | ||||
|             K = len(archs) | ||||
|         if use_random: | ||||
|             return random.sample(archs, K) | ||||
|         else: | ||||
|             sorted_pairs = sorted(pairs, key=lambda x: -x[0]) | ||||
|             return_pairs = [sorted_pairs[_][1] for _ in range(K)] | ||||
|             return return_pairs | ||||
|  | ||||
|     def normalize_archp(self): | ||||
|         if self.mode == "gdas": | ||||
|             while True: | ||||
|                 gumbels = -torch.empty_like(self.arch_parameters).exponential_().log() | ||||
|                 logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau | ||||
|                 probs = nn.functional.softmax(logits, dim=1) | ||||
|                 index = probs.max(-1, keepdim=True)[1] | ||||
|                 one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|                 hardwts = one_h - probs.detach() + probs | ||||
|                 if ( | ||||
|                     (torch.isinf(gumbels).any()) | ||||
|                     or (torch.isinf(probs).any()) | ||||
|                     or (torch.isnan(probs).any()) | ||||
|                 ): | ||||
|                     continue | ||||
|                 else: | ||||
|                     break | ||||
|             with torch.no_grad(): | ||||
|                 hardwts_cpu = hardwts.detach().cpu() | ||||
|             return hardwts, hardwts_cpu, index, "GUMBEL" | ||||
|         else: | ||||
|             alphas = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|             index = alphas.max(-1, keepdim=True)[1] | ||||
|             with torch.no_grad(): | ||||
|                 alphas_cpu = alphas.detach().cpu() | ||||
|             return alphas, alphas_cpu, index, "SOFTMAX" | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         alphas, alphas_cpu, index, verbose_str = self.normalize_archp() | ||||
|         feature = self._stem(inputs) | ||||
|         for i, cell in enumerate(self._cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 if self.mode == "urs": | ||||
|                     feature = cell.forward_urs(feature) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_urs" | ||||
|                 elif self.mode == "select": | ||||
|                     feature = cell.forward_select(feature, alphas_cpu) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_select" | ||||
|                 elif self.mode == "joint": | ||||
|                     feature = cell.forward_joint(feature, alphas) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_joint" | ||||
|                 elif self.mode == "dynamic": | ||||
|                     feature = cell.forward_dynamic(feature, self.dynamic_cell) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_dynamic" | ||||
|                 elif self.mode == "gdas": | ||||
|                     feature = cell.forward_gdas(feature, alphas, index) | ||||
|                     if self.verbose: | ||||
|                         verbose_str += "-forward_gdas" | ||||
|                 else: | ||||
|                     raise ValueError("invalid mode={:}".format(self.mode)) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|             if self.drop_path is not None: | ||||
|                 feature = drop_path(feature, self.drop_path) | ||||
|         if self.verbose and random.random() < 0.001: | ||||
|             print(verbose_str) | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|         return out, logits | ||||
|   | ||||
| @@ -5,194 +5,270 @@ from copy import deepcopy | ||||
|  | ||||
|  | ||||
| def get_combination(space, num): | ||||
|   combs = [] | ||||
|   for i in range(num): | ||||
|     if i == 0: | ||||
|       for func in space: | ||||
|         combs.append( [(func, i)] ) | ||||
|     else: | ||||
|       new_combs = [] | ||||
|       for string in combs: | ||||
|         for func in space: | ||||
|           xstring = string + [(func, i)] | ||||
|           new_combs.append( xstring ) | ||||
|       combs = new_combs | ||||
|   return combs | ||||
|     combs = [] | ||||
|     for i in range(num): | ||||
|         if i == 0: | ||||
|             for func in space: | ||||
|                 combs.append([(func, i)]) | ||||
|         else: | ||||
|             new_combs = [] | ||||
|             for string in combs: | ||||
|                 for func in space: | ||||
|                     xstring = string + [(func, i)] | ||||
|                     new_combs.append(xstring) | ||||
|             combs = new_combs | ||||
|     return combs | ||||
|  | ||||
|  | ||||
| class Structure: | ||||
|     def __init__(self, genotype): | ||||
|         assert isinstance(genotype, list) or isinstance( | ||||
|             genotype, tuple | ||||
|         ), "invalid class of genotype : {:}".format(type(genotype)) | ||||
|         self.node_num = len(genotype) + 1 | ||||
|         self.nodes = [] | ||||
|         self.node_N = [] | ||||
|         for idx, node_info in enumerate(genotype): | ||||
|             assert isinstance(node_info, list) or isinstance( | ||||
|                 node_info, tuple | ||||
|             ), "invalid class of node_info : {:}".format(type(node_info)) | ||||
|             assert len(node_info) >= 1, "invalid length : {:}".format(len(node_info)) | ||||
|             for node_in in node_info: | ||||
|                 assert isinstance(node_in, list) or isinstance( | ||||
|                     node_in, tuple | ||||
|                 ), "invalid class of in-node : {:}".format(type(node_in)) | ||||
|                 assert ( | ||||
|                     len(node_in) == 2 and node_in[1] <= idx | ||||
|                 ), "invalid in-node : {:}".format(node_in) | ||||
|             self.node_N.append(len(node_info)) | ||||
|             self.nodes.append(tuple(deepcopy(node_info))) | ||||
|  | ||||
|   def __init__(self, genotype): | ||||
|     assert isinstance(genotype, list) or isinstance(genotype, tuple), 'invalid class of genotype : {:}'.format(type(genotype)) | ||||
|     self.node_num = len(genotype) + 1 | ||||
|     self.nodes    = [] | ||||
|     self.node_N   = [] | ||||
|     for idx, node_info in enumerate(genotype): | ||||
|       assert isinstance(node_info, list) or isinstance(node_info, tuple), 'invalid class of node_info : {:}'.format(type(node_info)) | ||||
|       assert len(node_info) >= 1, 'invalid length : {:}'.format(len(node_info)) | ||||
|       for node_in in node_info: | ||||
|         assert isinstance(node_in, list) or isinstance(node_in, tuple), 'invalid class of in-node : {:}'.format(type(node_in)) | ||||
|         assert len(node_in) == 2 and node_in[1] <= idx, 'invalid in-node : {:}'.format(node_in) | ||||
|       self.node_N.append( len(node_info) ) | ||||
|       self.nodes.append( tuple(deepcopy(node_info)) ) | ||||
|     def tolist(self, remove_str): | ||||
|         # convert this class to the list, if remove_str is 'none', then remove the 'none' operation. | ||||
|         # note that we re-order the input node in this function | ||||
|         # return the-genotype-list and success [if unsuccess, it is not a connectivity] | ||||
|         genotypes = [] | ||||
|         for node_info in self.nodes: | ||||
|             node_info = list(node_info) | ||||
|             node_info = sorted(node_info, key=lambda x: (x[1], x[0])) | ||||
|             node_info = tuple(filter(lambda x: x[0] != remove_str, node_info)) | ||||
|             if len(node_info) == 0: | ||||
|                 return None, False | ||||
|             genotypes.append(node_info) | ||||
|         return genotypes, True | ||||
|  | ||||
|   def tolist(self, remove_str): | ||||
|     # convert this class to the list, if remove_str is 'none', then remove the 'none' operation. | ||||
|     # note that we re-order the input node in this function | ||||
|     # return the-genotype-list and success [if unsuccess, it is not a connectivity] | ||||
|     genotypes = [] | ||||
|     for node_info in self.nodes: | ||||
|       node_info = list( node_info ) | ||||
|       node_info = sorted(node_info, key=lambda x: (x[1], x[0])) | ||||
|       node_info = tuple(filter(lambda x: x[0] != remove_str, node_info)) | ||||
|       if len(node_info) == 0: return None, False | ||||
|       genotypes.append( node_info ) | ||||
|     return genotypes, True | ||||
|     def node(self, index): | ||||
|         assert index > 0 and index <= len(self), "invalid index={:} < {:}".format( | ||||
|             index, len(self) | ||||
|         ) | ||||
|         return self.nodes[index] | ||||
|  | ||||
|   def node(self, index): | ||||
|     assert index > 0 and index <= len(self), 'invalid index={:} < {:}'.format(index, len(self)) | ||||
|     return self.nodes[index] | ||||
|     def tostr(self): | ||||
|         strings = [] | ||||
|         for node_info in self.nodes: | ||||
|             string = "|".join([x[0] + "~{:}".format(x[1]) for x in node_info]) | ||||
|             string = "|{:}|".format(string) | ||||
|             strings.append(string) | ||||
|         return "+".join(strings) | ||||
|  | ||||
|   def tostr(self): | ||||
|     strings = [] | ||||
|     for node_info in self.nodes: | ||||
|       string = '|'.join([x[0]+'~{:}'.format(x[1]) for x in node_info]) | ||||
|       string = '|{:}|'.format(string) | ||||
|       strings.append( string ) | ||||
|     return '+'.join(strings) | ||||
|     def check_valid(self): | ||||
|         nodes = {0: True} | ||||
|         for i, node_info in enumerate(self.nodes): | ||||
|             sums = [] | ||||
|             for op, xin in node_info: | ||||
|                 if op == "none" or nodes[xin] is False: | ||||
|                     x = False | ||||
|                 else: | ||||
|                     x = True | ||||
|                 sums.append(x) | ||||
|             nodes[i + 1] = sum(sums) > 0 | ||||
|         return nodes[len(self.nodes)] | ||||
|  | ||||
|   def check_valid(self): | ||||
|     nodes = {0: True} | ||||
|     for i, node_info in enumerate(self.nodes): | ||||
|       sums = [] | ||||
|       for op, xin in node_info: | ||||
|         if op == 'none' or nodes[xin] is False: x = False | ||||
|         else: x = True | ||||
|         sums.append( x ) | ||||
|       nodes[i+1] = sum(sums) > 0 | ||||
|     return nodes[len(self.nodes)] | ||||
|     def to_unique_str(self, consider_zero=False): | ||||
|         # this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation | ||||
|         # two operations are special, i.e., none and skip_connect | ||||
|         nodes = {0: "0"} | ||||
|         for i_node, node_info in enumerate(self.nodes): | ||||
|             cur_node = [] | ||||
|             for op, xin in node_info: | ||||
|                 if consider_zero is None: | ||||
|                     x = "(" + nodes[xin] + ")" + "@{:}".format(op) | ||||
|                 elif consider_zero: | ||||
|                     if op == "none" or nodes[xin] == "#": | ||||
|                         x = "#"  # zero | ||||
|                     elif op == "skip_connect": | ||||
|                         x = nodes[xin] | ||||
|                     else: | ||||
|                         x = "(" + nodes[xin] + ")" + "@{:}".format(op) | ||||
|                 else: | ||||
|                     if op == "skip_connect": | ||||
|                         x = nodes[xin] | ||||
|                     else: | ||||
|                         x = "(" + nodes[xin] + ")" + "@{:}".format(op) | ||||
|                 cur_node.append(x) | ||||
|             nodes[i_node + 1] = "+".join(sorted(cur_node)) | ||||
|         return nodes[len(self.nodes)] | ||||
|  | ||||
|   def to_unique_str(self, consider_zero=False): | ||||
|     # this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation | ||||
|     # two operations are special, i.e., none and skip_connect | ||||
|     nodes = {0: '0'} | ||||
|     for i_node, node_info in enumerate(self.nodes): | ||||
|       cur_node = [] | ||||
|       for op, xin in node_info: | ||||
|         if consider_zero is None: | ||||
|           x = '('+nodes[xin]+')' + '@{:}'.format(op) | ||||
|         elif consider_zero: | ||||
|           if op == 'none' or nodes[xin] == '#': x = '#' # zero | ||||
|           elif op == 'skip_connect': x = nodes[xin] | ||||
|           else: x = '('+nodes[xin]+')' + '@{:}'.format(op) | ||||
|     def check_valid_op(self, op_names): | ||||
|         for node_info in self.nodes: | ||||
|             for inode_edge in node_info: | ||||
|                 # assert inode_edge[0] in op_names, 'invalid op-name : {:}'.format(inode_edge[0]) | ||||
|                 if inode_edge[0] not in op_names: | ||||
|                     return False | ||||
|         return True | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}({node_num} nodes with {node_info})".format( | ||||
|             name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self.nodes) + 1 | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|         return self.nodes[index] | ||||
|  | ||||
|     @staticmethod | ||||
|     def str2structure(xstr): | ||||
|         if isinstance(xstr, Structure): | ||||
|             return xstr | ||||
|         assert isinstance(xstr, str), "must take string (not {:}) as input".format( | ||||
|             type(xstr) | ||||
|         ) | ||||
|         nodestrs = xstr.split("+") | ||||
|         genotypes = [] | ||||
|         for i, node_str in enumerate(nodestrs): | ||||
|             inputs = list(filter(lambda x: x != "", node_str.split("|"))) | ||||
|             for xinput in inputs: | ||||
|                 assert len(xinput.split("~")) == 2, "invalid input length : {:}".format( | ||||
|                     xinput | ||||
|                 ) | ||||
|             inputs = (xi.split("~") for xi in inputs) | ||||
|             input_infos = tuple((op, int(IDX)) for (op, IDX) in inputs) | ||||
|             genotypes.append(input_infos) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     @staticmethod | ||||
|     def str2fullstructure(xstr, default_name="none"): | ||||
|         assert isinstance(xstr, str), "must take string (not {:}) as input".format( | ||||
|             type(xstr) | ||||
|         ) | ||||
|         nodestrs = xstr.split("+") | ||||
|         genotypes = [] | ||||
|         for i, node_str in enumerate(nodestrs): | ||||
|             inputs = list(filter(lambda x: x != "", node_str.split("|"))) | ||||
|             for xinput in inputs: | ||||
|                 assert len(xinput.split("~")) == 2, "invalid input length : {:}".format( | ||||
|                     xinput | ||||
|                 ) | ||||
|             inputs = (xi.split("~") for xi in inputs) | ||||
|             input_infos = list((op, int(IDX)) for (op, IDX) in inputs) | ||||
|             all_in_nodes = list(x[1] for x in input_infos) | ||||
|             for j in range(i): | ||||
|                 if j not in all_in_nodes: | ||||
|                     input_infos.append((default_name, j)) | ||||
|             node_info = sorted(input_infos, key=lambda x: (x[1], x[0])) | ||||
|             genotypes.append(tuple(node_info)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     @staticmethod | ||||
|     def gen_all(search_space, num, return_ori): | ||||
|         assert isinstance(search_space, list) or isinstance( | ||||
|             search_space, tuple | ||||
|         ), "invalid class of search-space : {:}".format(type(search_space)) | ||||
|         assert ( | ||||
|             num >= 2 | ||||
|         ), "There should be at least two nodes in a neural cell instead of {:}".format( | ||||
|             num | ||||
|         ) | ||||
|         all_archs = get_combination(search_space, 1) | ||||
|         for i, arch in enumerate(all_archs): | ||||
|             all_archs[i] = [tuple(arch)] | ||||
|  | ||||
|         for inode in range(2, num): | ||||
|             cur_nodes = get_combination(search_space, inode) | ||||
|             new_all_archs = [] | ||||
|             for previous_arch in all_archs: | ||||
|                 for cur_node in cur_nodes: | ||||
|                     new_all_archs.append(previous_arch + [tuple(cur_node)]) | ||||
|             all_archs = new_all_archs | ||||
|         if return_ori: | ||||
|             return all_archs | ||||
|         else: | ||||
|           if op == 'skip_connect': x = nodes[xin] | ||||
|           else: x = '('+nodes[xin]+')' + '@{:}'.format(op) | ||||
|         cur_node.append(x) | ||||
|       nodes[i_node+1] = '+'.join( sorted(cur_node) ) | ||||
|     return nodes[ len(self.nodes) ] | ||||
|  | ||||
|   def check_valid_op(self, op_names): | ||||
|     for node_info in self.nodes: | ||||
|       for inode_edge in node_info: | ||||
|         #assert inode_edge[0] in op_names, 'invalid op-name : {:}'.format(inode_edge[0]) | ||||
|         if inode_edge[0] not in op_names: return False | ||||
|     return True | ||||
|  | ||||
|   def __repr__(self): | ||||
|     return ('{name}({node_num} nodes with {node_info})'.format(name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__)) | ||||
|  | ||||
|   def __len__(self): | ||||
|     return len(self.nodes) + 1 | ||||
|  | ||||
|   def __getitem__(self, index): | ||||
|     return self.nodes[index] | ||||
|  | ||||
|   @staticmethod | ||||
|   def str2structure(xstr): | ||||
|     if isinstance(xstr, Structure): return xstr | ||||
|     assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr)) | ||||
|     nodestrs = xstr.split('+') | ||||
|     genotypes = [] | ||||
|     for i, node_str in enumerate(nodestrs): | ||||
|       inputs = list(filter(lambda x: x != '', node_str.split('|'))) | ||||
|       for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) | ||||
|       inputs = ( xi.split('~') for xi in inputs ) | ||||
|       input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs) | ||||
|       genotypes.append( input_infos ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   @staticmethod | ||||
|   def str2fullstructure(xstr, default_name='none'): | ||||
|     assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr)) | ||||
|     nodestrs = xstr.split('+') | ||||
|     genotypes = [] | ||||
|     for i, node_str in enumerate(nodestrs): | ||||
|       inputs = list(filter(lambda x: x != '', node_str.split('|'))) | ||||
|       for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) | ||||
|       inputs = ( xi.split('~') for xi in inputs ) | ||||
|       input_infos = list( (op, int(IDX)) for (op, IDX) in inputs) | ||||
|       all_in_nodes= list(x[1] for x in input_infos) | ||||
|       for j in range(i): | ||||
|         if j not in all_in_nodes: input_infos.append((default_name, j)) | ||||
|       node_info = sorted(input_infos, key=lambda x: (x[1], x[0])) | ||||
|       genotypes.append( tuple(node_info) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   @staticmethod | ||||
|   def gen_all(search_space, num, return_ori): | ||||
|     assert isinstance(search_space, list) or isinstance(search_space, tuple), 'invalid class of search-space : {:}'.format(type(search_space)) | ||||
|     assert num >= 2, 'There should be at least two nodes in a neural cell instead of {:}'.format(num) | ||||
|     all_archs = get_combination(search_space, 1) | ||||
|     for i, arch in enumerate(all_archs): | ||||
|       all_archs[i] = [ tuple(arch) ] | ||||
|    | ||||
|     for inode in range(2, num): | ||||
|       cur_nodes = get_combination(search_space, inode) | ||||
|       new_all_archs = [] | ||||
|       for previous_arch in all_archs: | ||||
|         for cur_node in cur_nodes: | ||||
|           new_all_archs.append( previous_arch + [tuple(cur_node)] ) | ||||
|       all_archs = new_all_archs | ||||
|     if return_ori: | ||||
|       return all_archs | ||||
|     else: | ||||
|       return [Structure(x) for x in all_archs] | ||||
|  | ||||
|             return [Structure(x) for x in all_archs] | ||||
|  | ||||
|  | ||||
| ResNet_CODE = Structure( | ||||
|   [(('nor_conv_3x3', 0), ), # node-1  | ||||
|    (('nor_conv_3x3', 1), ), # node-2 | ||||
|    (('skip_connect', 0), ('skip_connect', 2))] # node-3 | ||||
|   ) | ||||
|     [ | ||||
|         (("nor_conv_3x3", 0),),  # node-1 | ||||
|         (("nor_conv_3x3", 1),),  # node-2 | ||||
|         (("skip_connect", 0), ("skip_connect", 2)), | ||||
|     ]  # node-3 | ||||
| ) | ||||
|  | ||||
| AllConv3x3_CODE = Structure( | ||||
|   [(('nor_conv_3x3', 0), ), # node-1  | ||||
|    (('nor_conv_3x3', 0), ('nor_conv_3x3', 1)), # node-2 | ||||
|    (('nor_conv_3x3', 0), ('nor_conv_3x3', 1), ('nor_conv_3x3', 2))] # node-3 | ||||
|   ) | ||||
|     [ | ||||
|         (("nor_conv_3x3", 0),),  # node-1 | ||||
|         (("nor_conv_3x3", 0), ("nor_conv_3x3", 1)),  # node-2 | ||||
|         (("nor_conv_3x3", 0), ("nor_conv_3x3", 1), ("nor_conv_3x3", 2)), | ||||
|     ]  # node-3 | ||||
| ) | ||||
|  | ||||
| AllFull_CODE = Structure( | ||||
|   [(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0)), # node-1  | ||||
|    (('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1)), # node-2 | ||||
|    (('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1), ('skip_connect', 2), ('nor_conv_1x1', 2), ('nor_conv_3x3', 2), ('avg_pool_3x3', 2))] # node-3 | ||||
|   ) | ||||
|     [ | ||||
|         ( | ||||
|             ("skip_connect", 0), | ||||
|             ("nor_conv_1x1", 0), | ||||
|             ("nor_conv_3x3", 0), | ||||
|             ("avg_pool_3x3", 0), | ||||
|         ),  # node-1 | ||||
|         ( | ||||
|             ("skip_connect", 0), | ||||
|             ("nor_conv_1x1", 0), | ||||
|             ("nor_conv_3x3", 0), | ||||
|             ("avg_pool_3x3", 0), | ||||
|             ("skip_connect", 1), | ||||
|             ("nor_conv_1x1", 1), | ||||
|             ("nor_conv_3x3", 1), | ||||
|             ("avg_pool_3x3", 1), | ||||
|         ),  # node-2 | ||||
|         ( | ||||
|             ("skip_connect", 0), | ||||
|             ("nor_conv_1x1", 0), | ||||
|             ("nor_conv_3x3", 0), | ||||
|             ("avg_pool_3x3", 0), | ||||
|             ("skip_connect", 1), | ||||
|             ("nor_conv_1x1", 1), | ||||
|             ("nor_conv_3x3", 1), | ||||
|             ("avg_pool_3x3", 1), | ||||
|             ("skip_connect", 2), | ||||
|             ("nor_conv_1x1", 2), | ||||
|             ("nor_conv_3x3", 2), | ||||
|             ("avg_pool_3x3", 2), | ||||
|         ), | ||||
|     ]  # node-3 | ||||
| ) | ||||
|  | ||||
| AllConv1x1_CODE = Structure( | ||||
|   [(('nor_conv_1x1', 0), ), # node-1  | ||||
|    (('nor_conv_1x1', 0), ('nor_conv_1x1', 1)), # node-2 | ||||
|    (('nor_conv_1x1', 0), ('nor_conv_1x1', 1), ('nor_conv_1x1', 2))] # node-3 | ||||
|   ) | ||||
|     [ | ||||
|         (("nor_conv_1x1", 0),),  # node-1 | ||||
|         (("nor_conv_1x1", 0), ("nor_conv_1x1", 1)),  # node-2 | ||||
|         (("nor_conv_1x1", 0), ("nor_conv_1x1", 1), ("nor_conv_1x1", 2)), | ||||
|     ]  # node-3 | ||||
| ) | ||||
|  | ||||
| AllIdentity_CODE = Structure( | ||||
|   [(('skip_connect', 0), ), # node-1  | ||||
|    (('skip_connect', 0), ('skip_connect', 1)), # node-2 | ||||
|    (('skip_connect', 0), ('skip_connect', 1), ('skip_connect', 2))] # node-3 | ||||
|   ) | ||||
|     [ | ||||
|         (("skip_connect", 0),),  # node-1 | ||||
|         (("skip_connect", 0), ("skip_connect", 1)),  # node-2 | ||||
|         (("skip_connect", 0), ("skip_connect", 1), ("skip_connect", 2)), | ||||
|     ]  # node-3 | ||||
| ) | ||||
|  | ||||
| architectures = {'resnet'  : ResNet_CODE, | ||||
|                  'all_c3x3': AllConv3x3_CODE, | ||||
|                  'all_c1x1': AllConv1x1_CODE, | ||||
|                  'all_idnt': AllIdentity_CODE, | ||||
|                  'all_full': AllFull_CODE} | ||||
| architectures = { | ||||
|     "resnet": ResNet_CODE, | ||||
|     "all_c3x3": AllConv3x3_CODE, | ||||
|     "all_c1x1": AllConv1x1_CODE, | ||||
|     "all_idnt": AllIdentity_CODE, | ||||
|     "all_full": AllFull_CODE, | ||||
| } | ||||
|   | ||||
| @@ -11,191 +11,241 @@ from ..cell_operations import OPS | ||||
|  | ||||
| # This module is used for NAS-Bench-201, represents a small search space with a complete DAG | ||||
| class NAS201SearchCell(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C_in, | ||||
|         C_out, | ||||
|         stride, | ||||
|         max_nodes, | ||||
|         op_names, | ||||
|         affine=False, | ||||
|         track_running_stats=True, | ||||
|     ): | ||||
|         super(NAS201SearchCell, self).__init__() | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False, track_running_stats=True): | ||||
|     super(NAS201SearchCell, self).__init__() | ||||
|         self.op_names = deepcopy(op_names) | ||||
|         self.edges = nn.ModuleDict() | ||||
|         self.max_nodes = max_nodes | ||||
|         self.in_dim = C_in | ||||
|         self.out_dim = C_out | ||||
|         for i in range(1, max_nodes): | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 if j == 0: | ||||
|                     xlists = [ | ||||
|                         OPS[op_name](C_in, C_out, stride, affine, track_running_stats) | ||||
|                         for op_name in op_names | ||||
|                     ] | ||||
|                 else: | ||||
|                     xlists = [ | ||||
|                         OPS[op_name](C_in, C_out, 1, affine, track_running_stats) | ||||
|                         for op_name in op_names | ||||
|                     ] | ||||
|                 self.edges[node_str] = nn.ModuleList(xlists) | ||||
|         self.edge_keys = sorted(list(self.edges.keys())) | ||||
|         self.edge2index = {key: i for i, key in enumerate(self.edge_keys)} | ||||
|         self.num_edges = len(self.edges) | ||||
|  | ||||
|     self.op_names  = deepcopy(op_names) | ||||
|     self.edges     = nn.ModuleDict() | ||||
|     self.max_nodes = max_nodes | ||||
|     self.in_dim    = C_in | ||||
|     self.out_dim   = C_out | ||||
|     for i in range(1, max_nodes): | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         if j == 0: | ||||
|           xlists = [OPS[op_name](C_in , C_out, stride, affine, track_running_stats) for op_name in op_names] | ||||
|         else: | ||||
|           xlists = [OPS[op_name](C_in , C_out,      1, affine, track_running_stats) for op_name in op_names] | ||||
|         self.edges[ node_str ] = nn.ModuleList( xlists ) | ||||
|     self.edge_keys  = sorted(list(self.edges.keys())) | ||||
|     self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} | ||||
|     self.num_edges  = len(self.edges) | ||||
|     def extra_repr(self): | ||||
|         string = "info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}".format( | ||||
|             **self.__dict__ | ||||
|         ) | ||||
|         return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     string = 'info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}'.format(**self.__dict__) | ||||
|     return string | ||||
|     def forward(self, inputs, weightss): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             inter_nodes = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 weights = weightss[self.edge2index[node_str]] | ||||
|                 inter_nodes.append( | ||||
|                     sum( | ||||
|                         layer(nodes[j]) * w | ||||
|                         for layer, w in zip(self.edges[node_str], weights) | ||||
|                     ) | ||||
|                 ) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|   def forward(self, inputs, weightss): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       inter_nodes = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = weightss[ self.edge2index[node_str] ] | ||||
|         inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|     # GDAS | ||||
|     def forward_gdas(self, inputs, hardwts, index): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             inter_nodes = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 weights = hardwts[self.edge2index[node_str]] | ||||
|                 argmaxs = index[self.edge2index[node_str]].item() | ||||
|                 weigsum = sum( | ||||
|                     weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie] | ||||
|                     for _ie, edge in enumerate(self.edges[node_str]) | ||||
|                 ) | ||||
|                 inter_nodes.append(weigsum) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|   # GDAS | ||||
|   def forward_gdas(self, inputs, hardwts, index): | ||||
|     nodes   = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       inter_nodes = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = hardwts[ self.edge2index[node_str] ] | ||||
|         argmaxs  = index[ self.edge2index[node_str] ].item() | ||||
|         weigsum  = sum( weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie] for _ie, edge in enumerate(self.edges[node_str]) ) | ||||
|         inter_nodes.append( weigsum ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|     # joint | ||||
|     def forward_joint(self, inputs, weightss): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             inter_nodes = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 weights = weightss[self.edge2index[node_str]] | ||||
|                 # aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel() | ||||
|                 aggregation = sum( | ||||
|                     layer(nodes[j]) * w | ||||
|                     for layer, w in zip(self.edges[node_str], weights) | ||||
|                 ) | ||||
|                 inter_nodes.append(aggregation) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|   # joint | ||||
|   def forward_joint(self, inputs, weightss): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       inter_nodes = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = weightss[ self.edge2index[node_str] ] | ||||
|         #aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel() | ||||
|         aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) | ||||
|         inter_nodes.append( aggregation ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|     # uniform random sampling per iteration, SETN | ||||
|     def forward_urs(self, inputs): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             while True:  # to avoid select zero for all ops | ||||
|                 sops, has_non_zero = [], False | ||||
|                 for j in range(i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     candidates = self.edges[node_str] | ||||
|                     select_op = random.choice(candidates) | ||||
|                     sops.append(select_op) | ||||
|                     if not hasattr(select_op, "is_zero") or select_op.is_zero is False: | ||||
|                         has_non_zero = True | ||||
|                 if has_non_zero: | ||||
|                     break | ||||
|             inter_nodes = [] | ||||
|             for j, select_op in enumerate(sops): | ||||
|                 inter_nodes.append(select_op(nodes[j])) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|   # uniform random sampling per iteration, SETN | ||||
|   def forward_urs(self, inputs): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       while True: # to avoid select zero for all ops | ||||
|         sops, has_non_zero = [], False | ||||
|         for j in range(i): | ||||
|           node_str   = '{:}<-{:}'.format(i, j) | ||||
|           candidates = self.edges[node_str] | ||||
|           select_op  = random.choice(candidates) | ||||
|           sops.append( select_op ) | ||||
|           if not hasattr(select_op, 'is_zero') or select_op.is_zero is False: has_non_zero=True | ||||
|         if has_non_zero: break | ||||
|       inter_nodes = [] | ||||
|       for j, select_op in enumerate(sops): | ||||
|         inter_nodes.append( select_op(nodes[j]) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # select the argmax | ||||
|   def forward_select(self, inputs, weightss): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       inter_nodes = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights  = weightss[ self.edge2index[node_str] ] | ||||
|         inter_nodes.append( self.edges[node_str][ weights.argmax().item() ]( nodes[j] ) ) | ||||
|         #inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|  | ||||
|   # forward with a specific structure | ||||
|   def forward_dynamic(self, inputs, structure): | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       cur_op_node = structure.nodes[i-1] | ||||
|       inter_nodes = [] | ||||
|       for op_name, j in cur_op_node: | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op_index = self.op_names.index( op_name ) | ||||
|         inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) ) | ||||
|       nodes.append( sum(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
|     # select the argmax | ||||
|     def forward_select(self, inputs, weightss): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             inter_nodes = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 weights = weightss[self.edge2index[node_str]] | ||||
|                 inter_nodes.append( | ||||
|                     self.edges[node_str][weights.argmax().item()](nodes[j]) | ||||
|                 ) | ||||
|                 # inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) ) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|     # forward with a specific structure | ||||
|     def forward_dynamic(self, inputs, structure): | ||||
|         nodes = [inputs] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             cur_op_node = structure.nodes[i - 1] | ||||
|             inter_nodes = [] | ||||
|             for op_name, j in cur_op_node: | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 op_index = self.op_names.index(op_name) | ||||
|                 inter_nodes.append(self.edges[node_str][op_index](nodes[j])) | ||||
|             nodes.append(sum(inter_nodes)) | ||||
|         return nodes[-1] | ||||
|  | ||||
|  | ||||
| class MixedOp(nn.Module): | ||||
|     def __init__(self, space, C, stride, affine, track_running_stats): | ||||
|         super(MixedOp, self).__init__() | ||||
|         self._ops = nn.ModuleList() | ||||
|         for primitive in space: | ||||
|             op = OPS[primitive](C, C, stride, affine, track_running_stats) | ||||
|             self._ops.append(op) | ||||
|  | ||||
|   def __init__(self, space, C, stride, affine, track_running_stats): | ||||
|     super(MixedOp, self).__init__() | ||||
|     self._ops = nn.ModuleList() | ||||
|     for primitive in space: | ||||
|       op = OPS[primitive](C, C, stride, affine, track_running_stats) | ||||
|       self._ops.append(op) | ||||
|     def forward_gdas(self, x, weights, index): | ||||
|         return self._ops[index](x) * weights[index] | ||||
|  | ||||
|   def forward_gdas(self, x, weights, index): | ||||
|     return self._ops[index](x) * weights[index] | ||||
|  | ||||
|   def forward_darts(self, x, weights): | ||||
|     return sum(w * op(x) for w, op in zip(weights, self._ops)) | ||||
|     def forward_darts(self, x, weights): | ||||
|         return sum(w * op(x) for w, op in zip(weights, self._ops)) | ||||
|  | ||||
|  | ||||
| # Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018 | ||||
| class NASNetSearchCell(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         space, | ||||
|         steps, | ||||
|         multiplier, | ||||
|         C_prev_prev, | ||||
|         C_prev, | ||||
|         C, | ||||
|         reduction, | ||||
|         reduction_prev, | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ): | ||||
|         super(NASNetSearchCell, self).__init__() | ||||
|         self.reduction = reduction | ||||
|         self.op_names = deepcopy(space) | ||||
|         if reduction_prev: | ||||
|             self.preprocess0 = OPS["skip_connect"]( | ||||
|                 C_prev_prev, C, 2, affine, track_running_stats | ||||
|             ) | ||||
|         else: | ||||
|             self.preprocess0 = OPS["nor_conv_1x1"]( | ||||
|                 C_prev_prev, C, 1, affine, track_running_stats | ||||
|             ) | ||||
|         self.preprocess1 = OPS["nor_conv_1x1"]( | ||||
|             C_prev, C, 1, affine, track_running_stats | ||||
|         ) | ||||
|         self._steps = steps | ||||
|         self._multiplier = multiplier | ||||
|  | ||||
|   def __init__(self, space, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats): | ||||
|     super(NASNetSearchCell, self).__init__() | ||||
|     self.reduction = reduction | ||||
|     self.op_names  = deepcopy(space) | ||||
|     if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats) | ||||
|     else             : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats) | ||||
|     self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats) | ||||
|     self._steps = steps | ||||
|     self._multiplier = multiplier | ||||
|         self._ops = nn.ModuleList() | ||||
|         self.edges = nn.ModuleDict() | ||||
|         for i in range(self._steps): | ||||
|             for j in range(2 + i): | ||||
|                 node_str = "{:}<-{:}".format( | ||||
|                     i, j | ||||
|                 )  # indicate the edge from node-(j) to node-(i+2) | ||||
|                 stride = 2 if reduction and j < 2 else 1 | ||||
|                 op = MixedOp(space, C, stride, affine, track_running_stats) | ||||
|                 self.edges[node_str] = op | ||||
|         self.edge_keys = sorted(list(self.edges.keys())) | ||||
|         self.edge2index = {key: i for i, key in enumerate(self.edge_keys)} | ||||
|         self.num_edges = len(self.edges) | ||||
|  | ||||
|     self._ops = nn.ModuleList() | ||||
|     self.edges     = nn.ModuleDict() | ||||
|     for i in range(self._steps): | ||||
|       for j in range(2+i): | ||||
|         node_str = '{:}<-{:}'.format(i, j)  # indicate the edge from node-(j) to node-(i+2) | ||||
|         stride = 2 if reduction and j < 2 else 1 | ||||
|         op = MixedOp(space, C, stride, affine, track_running_stats) | ||||
|         self.edges[ node_str ] = op | ||||
|     self.edge_keys  = sorted(list(self.edges.keys())) | ||||
|     self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} | ||||
|     self.num_edges  = len(self.edges) | ||||
|     @property | ||||
|     def multiplier(self): | ||||
|         return self._multiplier | ||||
|  | ||||
|   @property | ||||
|   def multiplier(self): | ||||
|     return self._multiplier | ||||
|     def forward_gdas(self, s0, s1, weightss, indexs): | ||||
|         s0 = self.preprocess0(s0) | ||||
|         s1 = self.preprocess1(s1) | ||||
|  | ||||
|   def forward_gdas(self, s0, s1, weightss, indexs): | ||||
|     s0 = self.preprocess0(s0) | ||||
|     s1 = self.preprocess1(s1) | ||||
|         states = [s0, s1] | ||||
|         for i in range(self._steps): | ||||
|             clist = [] | ||||
|             for j, h in enumerate(states): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 op = self.edges[node_str] | ||||
|                 weights = weightss[self.edge2index[node_str]] | ||||
|                 index = indexs[self.edge2index[node_str]].item() | ||||
|                 clist.append(op.forward_gdas(h, weights, index)) | ||||
|             states.append(sum(clist)) | ||||
|  | ||||
|     states = [s0, s1] | ||||
|     for i in range(self._steps): | ||||
|       clist = [] | ||||
|       for j, h in enumerate(states): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op = self.edges[ node_str ] | ||||
|         weights = weightss[ self.edge2index[node_str] ] | ||||
|         index   = indexs[ self.edge2index[node_str] ].item() | ||||
|         clist.append( op.forward_gdas(h, weights, index) ) | ||||
|       states.append( sum(clist) ) | ||||
|         return torch.cat(states[-self._multiplier :], dim=1) | ||||
|  | ||||
|     return torch.cat(states[-self._multiplier:], dim=1) | ||||
|     def forward_darts(self, s0, s1, weightss): | ||||
|         s0 = self.preprocess0(s0) | ||||
|         s1 = self.preprocess1(s1) | ||||
|  | ||||
|   def forward_darts(self, s0, s1, weightss): | ||||
|     s0 = self.preprocess0(s0) | ||||
|     s1 = self.preprocess1(s1) | ||||
|         states = [s0, s1] | ||||
|         for i in range(self._steps): | ||||
|             clist = [] | ||||
|             for j, h in enumerate(states): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 op = self.edges[node_str] | ||||
|                 weights = weightss[self.edge2index[node_str]] | ||||
|                 clist.append(op.forward_darts(h, weights)) | ||||
|             states.append(sum(clist)) | ||||
|  | ||||
|     states = [s0, s1] | ||||
|     for i in range(self._steps): | ||||
|       clist = [] | ||||
|       for j, h in enumerate(states): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op = self.edges[ node_str ] | ||||
|         weights = weightss[ self.edge2index[node_str] ] | ||||
|         clist.append( op.forward_darts(h, weights) ) | ||||
|       states.append( sum(clist) ) | ||||
|  | ||||
|     return torch.cat(states[-self._multiplier:], dim=1) | ||||
|         return torch.cat(states[-self._multiplier :], dim=1) | ||||
|   | ||||
| @@ -7,91 +7,116 @@ import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkDarts(nn.Module): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(TinyNetworkDarts, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.max_nodes = max_nodes | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats): | ||||
|     super(TinyNetworkDarts, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_parameters] | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() ) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|             return "arch-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell(feature, alphas) | ||||
|       else: | ||||
|         feature = cell(feature) | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|     def genotype(self): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 with torch.no_grad(): | ||||
|                     weights = self.arch_parameters[self.edge2index[node_str]] | ||||
|                     op_name = self.op_names[weights.argmax().item()] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     return out, logits | ||||
|     def forward(self, inputs): | ||||
|         alphas = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|  | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 feature = cell(feature, alphas) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
|   | ||||
| @@ -10,103 +10,169 @@ from .search_cells import NASNetSearchCell as SearchCell | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkDARTS(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C: int, | ||||
|         N: int, | ||||
|         steps: int, | ||||
|         multiplier: int, | ||||
|         stem_multiplier: int, | ||||
|         num_classes: int, | ||||
|         search_space: List[Text], | ||||
|         affine: bool, | ||||
|         track_running_stats: bool, | ||||
|     ): | ||||
|         super(NASNetworkDARTS, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self._steps = steps | ||||
|         self._multiplier = multiplier | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(C * stem_multiplier), | ||||
|         ) | ||||
|  | ||||
|   def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int, | ||||
|                num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool): | ||||
|     super(NASNetworkDARTS, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self._steps    = steps | ||||
|     self._multiplier = multiplier | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C*stem_multiplier)) | ||||
|    | ||||
|     # config for each layer | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1) | ||||
|     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) | ||||
|         # config for each layer | ||||
|         layer_channels = ( | ||||
|             [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) | ||||
|         ) | ||||
|         layer_reductions = ( | ||||
|             [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) | ||||
|         ) | ||||
|  | ||||
|     num_edge, edge2index = None, None | ||||
|     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False | ||||
|         num_edge, edge2index = None, None | ||||
|         C_prev_prev, C_prev, C_curr, reduction_prev = ( | ||||
|             C * stem_multiplier, | ||||
|             C * stem_multiplier, | ||||
|             C, | ||||
|             False, | ||||
|         ) | ||||
|  | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) | ||||
|       if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|       else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             cell = SearchCell( | ||||
|                 search_space, | ||||
|                 steps, | ||||
|                 multiplier, | ||||
|                 C_prev_prev, | ||||
|                 C_prev, | ||||
|                 C_curr, | ||||
|                 reduction, | ||||
|                 reduction_prev, | ||||
|                 affine, | ||||
|                 track_running_stats, | ||||
|             ) | ||||
|             if num_edge is None: | ||||
|                 num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|             else: | ||||
|                 assert ( | ||||
|                     num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                 ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_normal_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.arch_reduce_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|  | ||||
|   def get_weights(self) -> List[torch.nn.Parameter]: | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|     def get_weights(self) -> List[torch.nn.Parameter]: | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|   def get_alphas(self) -> List[torch.nn.Parameter]: | ||||
|     return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|     def get_alphas(self) -> List[torch.nn.Parameter]: | ||||
|         return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|   def show_alphas(self) -> Text: | ||||
|     with torch.no_grad(): | ||||
|       A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() ) | ||||
|       B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() ) | ||||
|     return '{:}\n{:}'.format(A, B) | ||||
|     def show_alphas(self) -> Text: | ||||
|         with torch.no_grad(): | ||||
|             A = "arch-normal-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|             B = "arch-reduce-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|         return "{:}\n{:}".format(A, B) | ||||
|  | ||||
|   def get_message(self) -> Text: | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|     def get_message(self) -> Text: | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|   def extra_repr(self) -> Text: | ||||
|     return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|     def extra_repr(self) -> Text: | ||||
|         return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|   def genotype(self) -> Dict[Text, List]: | ||||
|     def _parse(weights): | ||||
|       gene = [] | ||||
|       for i in range(self._steps): | ||||
|         edges = [] | ||||
|         for j in range(2+i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           ws = weights[ self.edge2index[node_str] ] | ||||
|           for k, op_name in enumerate(self.op_names): | ||||
|             if op_name == 'none': continue | ||||
|             edges.append( (op_name, j, ws[k]) ) | ||||
|         # (TODO) xuanyidong: | ||||
|         # Here the selected two edges might come from the same input node. | ||||
|         # And this case could be a problem that two edges will collapse into a single one | ||||
|         # due to our assumption -- at most one edge from an input node during evaluation. | ||||
|         edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|         selected_edges = edges[:2] | ||||
|         gene.append( tuple(selected_edges) ) | ||||
|       return gene | ||||
|     with torch.no_grad(): | ||||
|       gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()) | ||||
|       gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()) | ||||
|     return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)), | ||||
|             'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))} | ||||
|     def genotype(self) -> Dict[Text, List]: | ||||
|         def _parse(weights): | ||||
|             gene = [] | ||||
|             for i in range(self._steps): | ||||
|                 edges = [] | ||||
|                 for j in range(2 + i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     ws = weights[self.edge2index[node_str]] | ||||
|                     for k, op_name in enumerate(self.op_names): | ||||
|                         if op_name == "none": | ||||
|                             continue | ||||
|                         edges.append((op_name, j, ws[k])) | ||||
|                 # (TODO) xuanyidong: | ||||
|                 # Here the selected two edges might come from the same input node. | ||||
|                 # And this case could be a problem that two edges will collapse into a single one | ||||
|                 # due to our assumption -- at most one edge from an input node during evaluation. | ||||
|                 edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|                 selected_edges = edges[:2] | ||||
|                 gene.append(tuple(selected_edges)) | ||||
|             return gene | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|         with torch.no_grad(): | ||||
|             gene_normal = _parse( | ||||
|                 torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|             gene_reduce = _parse( | ||||
|                 torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|         return { | ||||
|             "normal": gene_normal, | ||||
|             "normal_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|             "reduce": gene_reduce, | ||||
|             "reduce_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|         } | ||||
|  | ||||
|     normal_w = nn.functional.softmax(self.arch_normal_parameters, dim=1) | ||||
|     reduce_w = nn.functional.softmax(self.arch_reduce_parameters, dim=1) | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|     s0 = s1 = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if cell.reduction: ww = reduce_w | ||||
|       else             : ww = normal_w | ||||
|       s0, s1 = s1, cell.forward_darts(s0, s1, ww) | ||||
|     out = self.lastact(s1) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|         normal_w = nn.functional.softmax(self.arch_normal_parameters, dim=1) | ||||
|         reduce_w = nn.functional.softmax(self.arch_reduce_parameters, dim=1) | ||||
|  | ||||
|     return out, logits | ||||
|         s0 = s1 = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if cell.reduction: | ||||
|                 ww = reduce_w | ||||
|             else: | ||||
|                 ww = normal_w | ||||
|             s0, s1 = s1, cell.forward_darts(s0, s1, ww) | ||||
|         out = self.lastact(s1) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
|   | ||||
| @@ -7,88 +7,108 @@ import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
| from .search_model_enas_utils import Controller | ||||
|  | ||||
|  | ||||
| class TinyNetworkENAS(nn.Module): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(TinyNetworkENAS, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.max_nodes = max_nodes | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats): | ||||
|     super(TinyNetworkENAS, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     # to maintain the sampled architecture | ||||
|     self.sampled_arch = None | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         # to maintain the sampled architecture | ||||
|         self.sampled_arch = None | ||||
|  | ||||
|   def update_arch(self, _arch): | ||||
|     if _arch is None: | ||||
|       self.sampled_arch = None | ||||
|     elif isinstance(_arch, Structure): | ||||
|       self.sampled_arch = _arch | ||||
|     elif isinstance(_arch, (list, tuple)): | ||||
|       genotypes = [] | ||||
|       for i in range(1, self.max_nodes): | ||||
|         xlist = [] | ||||
|         for j in range(i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           op_index = _arch[ self.edge2index[node_str] ] | ||||
|           op_name  = self.op_names[ op_index ] | ||||
|           xlist.append((op_name, j)) | ||||
|         genotypes.append( tuple(xlist) ) | ||||
|       self.sampled_arch = Structure(genotypes) | ||||
|     else: | ||||
|       raise ValueError('invalid type of input architecture : {:}'.format(_arch)) | ||||
|     return self.sampled_arch | ||||
|      | ||||
|   def create_controller(self): | ||||
|     return Controller(len(self.edge2index), len(self.op_names)) | ||||
|     def update_arch(self, _arch): | ||||
|         if _arch is None: | ||||
|             self.sampled_arch = None | ||||
|         elif isinstance(_arch, Structure): | ||||
|             self.sampled_arch = _arch | ||||
|         elif isinstance(_arch, (list, tuple)): | ||||
|             genotypes = [] | ||||
|             for i in range(1, self.max_nodes): | ||||
|                 xlist = [] | ||||
|                 for j in range(i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     op_index = _arch[self.edge2index[node_str]] | ||||
|                     op_name = self.op_names[op_index] | ||||
|                     xlist.append((op_name, j)) | ||||
|                 genotypes.append(tuple(xlist)) | ||||
|             self.sampled_arch = Structure(genotypes) | ||||
|         else: | ||||
|             raise ValueError("invalid type of input architecture : {:}".format(_arch)) | ||||
|         return self.sampled_arch | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|     def create_controller(self): | ||||
|         return Controller(len(self.edge2index), len(self.op_names)) | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell.forward_dynamic(feature, self.sampled_arch) | ||||
|       else: feature = cell(feature) | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 feature = cell.forward_dynamic(feature, self.sampled_arch) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|  | ||||
|     return out, logits | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
|   | ||||
| @@ -7,49 +7,68 @@ import torch | ||||
| import torch.nn as nn | ||||
| from torch.distributions.categorical import Categorical | ||||
|  | ||||
|  | ||||
| class Controller(nn.Module): | ||||
|   # we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py | ||||
|   def __init__(self, num_edge, num_ops, lstm_size=32, lstm_num_layers=2, tanh_constant=2.5, temperature=5.0): | ||||
|     super(Controller, self).__init__() | ||||
|     # assign the attributes | ||||
|     self.num_edge  = num_edge | ||||
|     self.num_ops   = num_ops | ||||
|     self.lstm_size = lstm_size | ||||
|     self.lstm_N    = lstm_num_layers | ||||
|     self.tanh_constant = tanh_constant | ||||
|     self.temperature   = temperature | ||||
|     # create parameters | ||||
|     self.register_parameter('input_vars', nn.Parameter(torch.Tensor(1, 1, lstm_size))) | ||||
|     self.w_lstm = nn.LSTM(input_size=self.lstm_size, hidden_size=self.lstm_size, num_layers=self.lstm_N) | ||||
|     self.w_embd = nn.Embedding(self.num_ops, self.lstm_size) | ||||
|     self.w_pred = nn.Linear(self.lstm_size, self.num_ops) | ||||
|     # we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py | ||||
|     def __init__( | ||||
|         self, | ||||
|         num_edge, | ||||
|         num_ops, | ||||
|         lstm_size=32, | ||||
|         lstm_num_layers=2, | ||||
|         tanh_constant=2.5, | ||||
|         temperature=5.0, | ||||
|     ): | ||||
|         super(Controller, self).__init__() | ||||
|         # assign the attributes | ||||
|         self.num_edge = num_edge | ||||
|         self.num_ops = num_ops | ||||
|         self.lstm_size = lstm_size | ||||
|         self.lstm_N = lstm_num_layers | ||||
|         self.tanh_constant = tanh_constant | ||||
|         self.temperature = temperature | ||||
|         # create parameters | ||||
|         self.register_parameter( | ||||
|             "input_vars", nn.Parameter(torch.Tensor(1, 1, lstm_size)) | ||||
|         ) | ||||
|         self.w_lstm = nn.LSTM( | ||||
|             input_size=self.lstm_size, | ||||
|             hidden_size=self.lstm_size, | ||||
|             num_layers=self.lstm_N, | ||||
|         ) | ||||
|         self.w_embd = nn.Embedding(self.num_ops, self.lstm_size) | ||||
|         self.w_pred = nn.Linear(self.lstm_size, self.num_ops) | ||||
|  | ||||
|     nn.init.uniform_(self.input_vars         , -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_embd.weight      , -0.1, 0.1) | ||||
|     nn.init.uniform_(self.w_pred.weight      , -0.1, 0.1) | ||||
|         nn.init.uniform_(self.input_vars, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_embd.weight, -0.1, 0.1) | ||||
|         nn.init.uniform_(self.w_pred.weight, -0.1, 0.1) | ||||
|  | ||||
|   def forward(self): | ||||
|     def forward(self): | ||||
|  | ||||
|     inputs, h0 = self.input_vars, None | ||||
|     log_probs, entropys, sampled_arch = [], [], [] | ||||
|     for iedge in range(self.num_edge): | ||||
|       outputs, h0 = self.w_lstm(inputs, h0) | ||||
|        | ||||
|       logits = self.w_pred(outputs) | ||||
|       logits = logits / self.temperature | ||||
|       logits = self.tanh_constant * torch.tanh(logits) | ||||
|       # distribution | ||||
|       op_distribution = Categorical(logits=logits) | ||||
|       op_index    = op_distribution.sample() | ||||
|       sampled_arch.append( op_index.item() ) | ||||
|         inputs, h0 = self.input_vars, None | ||||
|         log_probs, entropys, sampled_arch = [], [], [] | ||||
|         for iedge in range(self.num_edge): | ||||
|             outputs, h0 = self.w_lstm(inputs, h0) | ||||
|  | ||||
|       op_log_prob = op_distribution.log_prob(op_index) | ||||
|       log_probs.append( op_log_prob.view(-1) ) | ||||
|       op_entropy  = op_distribution.entropy() | ||||
|       entropys.append( op_entropy.view(-1) ) | ||||
|        | ||||
|       # obtain the input embedding for the next step | ||||
|       inputs = self.w_embd(op_index) | ||||
|     return torch.sum(torch.cat(log_probs)), torch.sum(torch.cat(entropys)), sampled_arch | ||||
|             logits = self.w_pred(outputs) | ||||
|             logits = logits / self.temperature | ||||
|             logits = self.tanh_constant * torch.tanh(logits) | ||||
|             # distribution | ||||
|             op_distribution = Categorical(logits=logits) | ||||
|             op_index = op_distribution.sample() | ||||
|             sampled_arch.append(op_index.item()) | ||||
|  | ||||
|             op_log_prob = op_distribution.log_prob(op_index) | ||||
|             log_probs.append(op_log_prob.view(-1)) | ||||
|             op_entropy = op_distribution.entropy() | ||||
|             entropys.append(op_entropy.view(-1)) | ||||
|  | ||||
|             # obtain the input embedding for the next step | ||||
|             inputs = self.w_embd(op_index) | ||||
|         return ( | ||||
|             torch.sum(torch.cat(log_probs)), | ||||
|             torch.sum(torch.cat(entropys)), | ||||
|             sampled_arch, | ||||
|         ) | ||||
|   | ||||
| @@ -5,107 +5,138 @@ import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkGDAS(nn.Module): | ||||
|  | ||||
|   #def __init__(self, C, N, max_nodes, num_classes, search_space, affine=False, track_running_stats=True): | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats): | ||||
|     super(TinyNetworkGDAS, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|     # def __init__(self, C, N, max_nodes, num_classes, search_space, affine=False, track_running_stats=True): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(TinyNetworkGDAS, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.max_nodes = max_nodes | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.tau        = 10 | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.tau = 10 | ||||
|  | ||||
|   def set_tau(self, tau): | ||||
|     self.tau = tau | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|   def get_tau(self): | ||||
|     return self.tau | ||||
|     def set_tau(self, tau): | ||||
|         self.tau = tau | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|     def get_tau(self): | ||||
|         return self.tau | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() ) | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_parameters] | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|             return "arch-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     while True: | ||||
|       gumbels = -torch.empty_like(self.arch_parameters).exponential_().log() | ||||
|       logits  = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau | ||||
|       probs   = nn.functional.softmax(logits, dim=1) | ||||
|       index   = probs.max(-1, keepdim=True)[1] | ||||
|       one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|       hardwts = one_h - probs.detach() + probs | ||||
|       if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): | ||||
|         continue | ||||
|       else: break | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell.forward_gdas(feature, hardwts, index) | ||||
|       else: | ||||
|         feature = cell(feature) | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     return out, logits | ||||
|     def genotype(self): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 with torch.no_grad(): | ||||
|                     weights = self.arch_parameters[self.edge2index[node_str]] | ||||
|                     op_name = self.op_names[weights.argmax().item()] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         while True: | ||||
|             gumbels = -torch.empty_like(self.arch_parameters).exponential_().log() | ||||
|             logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau | ||||
|             probs = nn.functional.softmax(logits, dim=1) | ||||
|             index = probs.max(-1, keepdim=True)[1] | ||||
|             one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|             hardwts = one_h - probs.detach() + probs | ||||
|             if ( | ||||
|                 (torch.isinf(gumbels).any()) | ||||
|                 or (torch.isinf(probs).any()) | ||||
|                 or (torch.isnan(probs).any()) | ||||
|             ): | ||||
|                 continue | ||||
|             else: | ||||
|                 break | ||||
|  | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 feature = cell.forward_gdas(feature, hardwts, index) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
|   | ||||
| @@ -10,116 +10,190 @@ from models.cell_operations import RAW_OP_CLASSES | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkGDAS_FRC(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C, | ||||
|         N, | ||||
|         steps, | ||||
|         multiplier, | ||||
|         stem_multiplier, | ||||
|         num_classes, | ||||
|         search_space, | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ): | ||||
|         super(NASNetworkGDAS_FRC, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self._steps = steps | ||||
|         self._multiplier = multiplier | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(C * stem_multiplier), | ||||
|         ) | ||||
|  | ||||
|   def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats): | ||||
|     super(NASNetworkGDAS_FRC, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self._steps    = steps | ||||
|     self._multiplier = multiplier | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C*stem_multiplier)) | ||||
|    | ||||
|     # config for each layer | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1) | ||||
|     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) | ||||
|         # config for each layer | ||||
|         layer_channels = ( | ||||
|             [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) | ||||
|         ) | ||||
|         layer_reductions = ( | ||||
|             [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) | ||||
|         ) | ||||
|  | ||||
|     num_edge, edge2index = None, None | ||||
|     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False | ||||
|         num_edge, edge2index = None, None | ||||
|         C_prev_prev, C_prev, C_curr, reduction_prev = ( | ||||
|             C * stem_multiplier, | ||||
|             C * stem_multiplier, | ||||
|             C, | ||||
|             False, | ||||
|         ) | ||||
|  | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = RAW_OP_CLASSES['gdas_reduction'](C_prev_prev, C_prev, C_curr, reduction_prev, affine, track_running_stats) | ||||
|       else: | ||||
|         cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) | ||||
|       if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|       else: assert reduction or num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev_prev, C_prev, reduction_prev = C_prev, cell.multiplier * C_curr, reduction | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.tau        = 10 | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = RAW_OP_CLASSES["gdas_reduction"]( | ||||
|                     C_prev_prev, | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     reduction_prev, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     search_space, | ||||
|                     steps, | ||||
|                     multiplier, | ||||
|                     C_prev_prev, | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     reduction, | ||||
|                     reduction_prev, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|             if num_edge is None: | ||||
|                 num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|             else: | ||||
|                 assert ( | ||||
|                     reduction | ||||
|                     or num_edge == cell.num_edges | ||||
|                     and edge2index == cell.edge2index | ||||
|                 ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev_prev, C_prev, reduction_prev = ( | ||||
|                 C_prev, | ||||
|                 cell.multiplier * C_curr, | ||||
|                 reduction, | ||||
|             ) | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.tau = 10 | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|   def set_tau(self, tau): | ||||
|     self.tau = tau | ||||
|     def set_tau(self, tau): | ||||
|         self.tau = tau | ||||
|  | ||||
|   def get_tau(self): | ||||
|     return self.tau | ||||
|     def get_tau(self): | ||||
|         return self.tau | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_parameters] | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       A = 'arch-normal-parameters :\n{:}'.format(nn.functional.softmax(self.arch_parameters, dim=-1).cpu()) | ||||
|     return '{:}'.format(A) | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             A = "arch-normal-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|         return "{:}".format(A) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|   def genotype(self): | ||||
|     def _parse(weights): | ||||
|       gene = [] | ||||
|       for i in range(self._steps): | ||||
|         edges = [] | ||||
|         for j in range(2+i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           ws = weights[ self.edge2index[node_str] ] | ||||
|           for k, op_name in enumerate(self.op_names): | ||||
|             if op_name == 'none': continue | ||||
|             edges.append( (op_name, j, ws[k]) ) | ||||
|         edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|         selected_edges = edges[:2] | ||||
|         gene.append( tuple(selected_edges) ) | ||||
|       return gene | ||||
|     with torch.no_grad(): | ||||
|       gene_normal = _parse(torch.softmax(self.arch_parameters, dim=-1).cpu().numpy()) | ||||
|     return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2))} | ||||
|     def genotype(self): | ||||
|         def _parse(weights): | ||||
|             gene = [] | ||||
|             for i in range(self._steps): | ||||
|                 edges = [] | ||||
|                 for j in range(2 + i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     ws = weights[self.edge2index[node_str]] | ||||
|                     for k, op_name in enumerate(self.op_names): | ||||
|                         if op_name == "none": | ||||
|                             continue | ||||
|                         edges.append((op_name, j, ws[k])) | ||||
|                 edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|                 selected_edges = edges[:2] | ||||
|                 gene.append(tuple(selected_edges)) | ||||
|             return gene | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     def get_gumbel_prob(xins): | ||||
|       while True: | ||||
|         gumbels = -torch.empty_like(xins).exponential_().log() | ||||
|         logits  = (xins.log_softmax(dim=1) + gumbels) / self.tau | ||||
|         probs   = nn.functional.softmax(logits, dim=1) | ||||
|         index   = probs.max(-1, keepdim=True)[1] | ||||
|         one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|         hardwts = one_h - probs.detach() + probs | ||||
|         if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): | ||||
|           continue | ||||
|         else: break | ||||
|       return hardwts, index | ||||
|         with torch.no_grad(): | ||||
|             gene_normal = _parse( | ||||
|                 torch.softmax(self.arch_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|         return { | ||||
|             "normal": gene_normal, | ||||
|             "normal_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|         } | ||||
|  | ||||
|     hardwts, index = get_gumbel_prob(self.arch_parameters) | ||||
|     def forward(self, inputs): | ||||
|         def get_gumbel_prob(xins): | ||||
|             while True: | ||||
|                 gumbels = -torch.empty_like(xins).exponential_().log() | ||||
|                 logits = (xins.log_softmax(dim=1) + gumbels) / self.tau | ||||
|                 probs = nn.functional.softmax(logits, dim=1) | ||||
|                 index = probs.max(-1, keepdim=True)[1] | ||||
|                 one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|                 hardwts = one_h - probs.detach() + probs | ||||
|                 if ( | ||||
|                     (torch.isinf(gumbels).any()) | ||||
|                     or (torch.isinf(probs).any()) | ||||
|                     or (torch.isnan(probs).any()) | ||||
|                 ): | ||||
|                     continue | ||||
|                 else: | ||||
|                     break | ||||
|             return hardwts, index | ||||
|  | ||||
|     s0 = s1 = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if cell.reduction: | ||||
|         s0, s1 = s1, cell(s0, s1) | ||||
|       else:  | ||||
|         s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|     out = self.lastact(s1) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|         hardwts, index = get_gumbel_prob(self.arch_parameters) | ||||
|  | ||||
|     return out, logits | ||||
|         s0 = s1 = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if cell.reduction: | ||||
|                 s0, s1 = s1, cell(s0, s1) | ||||
|             else: | ||||
|                 s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|         out = self.lastact(s1) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
|   | ||||
| @@ -9,117 +9,189 @@ from .search_cells import NASNetSearchCell as SearchCell | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkGDAS(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C, | ||||
|         N, | ||||
|         steps, | ||||
|         multiplier, | ||||
|         stem_multiplier, | ||||
|         num_classes, | ||||
|         search_space, | ||||
|         affine, | ||||
|         track_running_stats, | ||||
|     ): | ||||
|         super(NASNetworkGDAS, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self._steps = steps | ||||
|         self._multiplier = multiplier | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(C * stem_multiplier), | ||||
|         ) | ||||
|  | ||||
|   def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats): | ||||
|     super(NASNetworkGDAS, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self._steps    = steps | ||||
|     self._multiplier = multiplier | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C*stem_multiplier)) | ||||
|    | ||||
|     # config for each layer | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1) | ||||
|     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) | ||||
|         # config for each layer | ||||
|         layer_channels = ( | ||||
|             [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) | ||||
|         ) | ||||
|         layer_reductions = ( | ||||
|             [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) | ||||
|         ) | ||||
|  | ||||
|     num_edge, edge2index = None, None | ||||
|     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False | ||||
|         num_edge, edge2index = None, None | ||||
|         C_prev_prev, C_prev, C_curr, reduction_prev = ( | ||||
|             C * stem_multiplier, | ||||
|             C * stem_multiplier, | ||||
|             C, | ||||
|             False, | ||||
|         ) | ||||
|  | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) | ||||
|       if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|       else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.tau        = 10 | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             cell = SearchCell( | ||||
|                 search_space, | ||||
|                 steps, | ||||
|                 multiplier, | ||||
|                 C_prev_prev, | ||||
|                 C_prev, | ||||
|                 C_curr, | ||||
|                 reduction, | ||||
|                 reduction_prev, | ||||
|                 affine, | ||||
|                 track_running_stats, | ||||
|             ) | ||||
|             if num_edge is None: | ||||
|                 num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|             else: | ||||
|                 assert ( | ||||
|                     num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                 ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_normal_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.arch_reduce_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.tau = 10 | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|   def set_tau(self, tau): | ||||
|     self.tau = tau | ||||
|     def set_tau(self, tau): | ||||
|         self.tau = tau | ||||
|  | ||||
|   def get_tau(self): | ||||
|     return self.tau | ||||
|     def get_tau(self): | ||||
|         return self.tau | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() ) | ||||
|       B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() ) | ||||
|     return '{:}\n{:}'.format(A, B) | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             A = "arch-normal-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|             B = "arch-reduce-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|         return "{:}\n{:}".format(A, B) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|   def genotype(self): | ||||
|     def _parse(weights): | ||||
|       gene = [] | ||||
|       for i in range(self._steps): | ||||
|         edges = [] | ||||
|         for j in range(2+i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           ws = weights[ self.edge2index[node_str] ] | ||||
|           for k, op_name in enumerate(self.op_names): | ||||
|             if op_name == 'none': continue | ||||
|             edges.append( (op_name, j, ws[k]) ) | ||||
|         edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|         selected_edges = edges[:2] | ||||
|         gene.append( tuple(selected_edges) ) | ||||
|       return gene | ||||
|     with torch.no_grad(): | ||||
|       gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()) | ||||
|       gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()) | ||||
|     return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)), | ||||
|             'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))} | ||||
|     def genotype(self): | ||||
|         def _parse(weights): | ||||
|             gene = [] | ||||
|             for i in range(self._steps): | ||||
|                 edges = [] | ||||
|                 for j in range(2 + i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     ws = weights[self.edge2index[node_str]] | ||||
|                     for k, op_name in enumerate(self.op_names): | ||||
|                         if op_name == "none": | ||||
|                             continue | ||||
|                         edges.append((op_name, j, ws[k])) | ||||
|                 edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|                 selected_edges = edges[:2] | ||||
|                 gene.append(tuple(selected_edges)) | ||||
|             return gene | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     def get_gumbel_prob(xins): | ||||
|       while True: | ||||
|         gumbels = -torch.empty_like(xins).exponential_().log() | ||||
|         logits  = (xins.log_softmax(dim=1) + gumbels) / self.tau | ||||
|         probs   = nn.functional.softmax(logits, dim=1) | ||||
|         index   = probs.max(-1, keepdim=True)[1] | ||||
|         one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|         hardwts = one_h - probs.detach() + probs | ||||
|         if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): | ||||
|           continue | ||||
|         else: break | ||||
|       return hardwts, index | ||||
|         with torch.no_grad(): | ||||
|             gene_normal = _parse( | ||||
|                 torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|             gene_reduce = _parse( | ||||
|                 torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|         return { | ||||
|             "normal": gene_normal, | ||||
|             "normal_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|             "reduce": gene_reduce, | ||||
|             "reduce_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|         } | ||||
|  | ||||
|     normal_hardwts, normal_index = get_gumbel_prob(self.arch_normal_parameters) | ||||
|     reduce_hardwts, reduce_index = get_gumbel_prob(self.arch_reduce_parameters) | ||||
|     def forward(self, inputs): | ||||
|         def get_gumbel_prob(xins): | ||||
|             while True: | ||||
|                 gumbels = -torch.empty_like(xins).exponential_().log() | ||||
|                 logits = (xins.log_softmax(dim=1) + gumbels) / self.tau | ||||
|                 probs = nn.functional.softmax(logits, dim=1) | ||||
|                 index = probs.max(-1, keepdim=True)[1] | ||||
|                 one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|                 hardwts = one_h - probs.detach() + probs | ||||
|                 if ( | ||||
|                     (torch.isinf(gumbels).any()) | ||||
|                     or (torch.isinf(probs).any()) | ||||
|                     or (torch.isnan(probs).any()) | ||||
|                 ): | ||||
|                     continue | ||||
|                 else: | ||||
|                     break | ||||
|             return hardwts, index | ||||
|  | ||||
|     s0 = s1 = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if cell.reduction: hardwts, index = reduce_hardwts, reduce_index | ||||
|       else             : hardwts, index = normal_hardwts, normal_index | ||||
|       s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|     out = self.lastact(s1) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|         normal_hardwts, normal_index = get_gumbel_prob(self.arch_normal_parameters) | ||||
|         reduce_hardwts, reduce_index = get_gumbel_prob(self.arch_reduce_parameters) | ||||
|  | ||||
|     return out, logits | ||||
|         s0 = s1 = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if cell.reduction: | ||||
|                 hardwts, index = reduce_hardwts, reduce_index | ||||
|             else: | ||||
|                 hardwts, index = normal_hardwts, normal_index | ||||
|             s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|         out = self.lastact(s1) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
|   | ||||
| @@ -1,81 +1,102 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ############################################################################## | ||||
| # Random Search and Reproducibility for Neural Architecture Search, UAI 2019 #  | ||||
| # Random Search and Reproducibility for Neural Architecture Search, UAI 2019 # | ||||
| ############################################################################## | ||||
| import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkRANDOM(nn.Module): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(TinyNetworkRANDOM, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.max_nodes = max_nodes | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats): | ||||
|     super(TinyNetworkRANDOM, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_cache = None | ||||
|      | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_cache = None | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|   def random_genotype(self, set_cache): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op_name  = random.choice( self.op_names ) | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     arch = Structure( genotypes ) | ||||
|     if set_cache: self.arch_cache = arch | ||||
|     return arch | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     def random_genotype(self, set_cache): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 op_name = random.choice(self.op_names) | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         arch = Structure(genotypes) | ||||
|         if set_cache: | ||||
|             self.arch_cache = arch | ||||
|         return arch | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell.forward_dynamic(feature, self.arch_cache) | ||||
|       else: feature = cell(feature) | ||||
|     def forward(self, inputs): | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|     return out, logits | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 feature = cell.forward_dynamic(feature, self.arch_cache) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|         return out, logits | ||||
|   | ||||
| @@ -7,146 +7,172 @@ import torch, random | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
| from .genotypes        import Structure | ||||
| from .search_cells import NAS201SearchCell as SearchCell | ||||
| from .genotypes import Structure | ||||
|  | ||||
|  | ||||
| class TinyNetworkSETN(nn.Module): | ||||
|     def __init__( | ||||
|         self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats | ||||
|     ): | ||||
|         super(TinyNetworkSETN, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self.max_nodes = max_nodes | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) | ||||
|         ) | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats): | ||||
|     super(TinyNetworkSETN, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C)) | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N | ||||
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev = cell.out_dim | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.mode       = 'urs' | ||||
|     self.dynamic_cell = None | ||||
|      | ||||
|   def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|     assert mode in ['urs', 'joint', 'select', 'dynamic'] | ||||
|     self.mode = mode | ||||
|     if mode == 'dynamic': self.dynamic_cell = deepcopy( dynamic_cell ) | ||||
|     else                : self.dynamic_cell = None | ||||
|         C_prev, num_edge, edge2index = C, None, None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             if reduction: | ||||
|                 cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|             else: | ||||
|                 cell = SearchCell( | ||||
|                     C_prev, | ||||
|                     C_curr, | ||||
|                     1, | ||||
|                     max_nodes, | ||||
|                     search_space, | ||||
|                     affine, | ||||
|                     track_running_stats, | ||||
|                 ) | ||||
|                 if num_edge is None: | ||||
|                     num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|                 else: | ||||
|                     assert ( | ||||
|                         num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                     ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev = cell.out_dim | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.mode = "urs" | ||||
|         self.dynamic_cell = None | ||||
|  | ||||
|   def get_cal_mode(self): | ||||
|     return self.mode | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|  | ||||
|   def dync_genotype(self, use_random=False): | ||||
|     genotypes = [] | ||||
|     with torch.no_grad(): | ||||
|       alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         if use_random: | ||||
|           op_name  = random.choice(self.op_names) | ||||
|     def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|         assert mode in ["urs", "joint", "select", "dynamic"] | ||||
|         self.mode = mode | ||||
|         if mode == "dynamic": | ||||
|             self.dynamic_cell = deepcopy(dynamic_cell) | ||||
|         else: | ||||
|           weights  = alphas_cpu[ self.edge2index[node_str] ] | ||||
|           op_index = torch.multinomial(weights, 1).item() | ||||
|           op_name  = self.op_names[ op_index ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|             self.dynamic_cell = None | ||||
|  | ||||
|   def get_log_prob(self, arch): | ||||
|     with torch.no_grad(): | ||||
|       logits = nn.functional.log_softmax(self.arch_parameters, dim=-1) | ||||
|     select_logits = [] | ||||
|     for i, node_info in enumerate(arch.nodes): | ||||
|       for op, xin in node_info: | ||||
|         node_str = '{:}<-{:}'.format(i+1, xin) | ||||
|         op_index = self.op_names.index(op) | ||||
|         select_logits.append( logits[self.edge2index[node_str], op_index] ) | ||||
|     return sum(select_logits).item() | ||||
|     def get_cal_mode(self): | ||||
|         return self.mode | ||||
|  | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|   def return_topK(self, K): | ||||
|     archs = Structure.gen_all(self.op_names, self.max_nodes, False) | ||||
|     pairs = [(self.get_log_prob(arch), arch) for arch in archs] | ||||
|     if K < 0 or K >= len(archs): K = len(archs) | ||||
|     sorted_pairs = sorted(pairs, key=lambda x: -x[0]) | ||||
|     return_pairs = [sorted_pairs[_][1] for _ in range(K)] | ||||
|     return return_pairs | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_parameters] | ||||
|  | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     with torch.no_grad(): | ||||
|       alphas_cpu = alphas.detach().cpu() | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     feature = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if isinstance(cell, SearchCell): | ||||
|         if self.mode == 'urs': | ||||
|           feature = cell.forward_urs(feature) | ||||
|         elif self.mode == 'select': | ||||
|           feature = cell.forward_select(feature, alphas_cpu) | ||||
|         elif self.mode == 'joint': | ||||
|           feature = cell.forward_joint(feature, alphas) | ||||
|         elif self.mode == 'dynamic': | ||||
|           feature = cell.forward_dynamic(feature, self.dynamic_cell) | ||||
|         else: raise ValueError('invalid mode={:}'.format(self.mode)) | ||||
|       else: feature = cell(feature) | ||||
|     def genotype(self): | ||||
|         genotypes = [] | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 with torch.no_grad(): | ||||
|                     weights = self.arch_parameters[self.edge2index[node_str]] | ||||
|                     op_name = self.op_names[weights.argmax().item()] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     out = self.lastact(feature) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|     def dync_genotype(self, use_random=False): | ||||
|         genotypes = [] | ||||
|         with torch.no_grad(): | ||||
|             alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 if use_random: | ||||
|                     op_name = random.choice(self.op_names) | ||||
|                 else: | ||||
|                     weights = alphas_cpu[self.edge2index[node_str]] | ||||
|                     op_index = torch.multinomial(weights, 1).item() | ||||
|                     op_name = self.op_names[op_index] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     return out, logits | ||||
|     def get_log_prob(self, arch): | ||||
|         with torch.no_grad(): | ||||
|             logits = nn.functional.log_softmax(self.arch_parameters, dim=-1) | ||||
|         select_logits = [] | ||||
|         for i, node_info in enumerate(arch.nodes): | ||||
|             for op, xin in node_info: | ||||
|                 node_str = "{:}<-{:}".format(i + 1, xin) | ||||
|                 op_index = self.op_names.index(op) | ||||
|                 select_logits.append(logits[self.edge2index[node_str], op_index]) | ||||
|         return sum(select_logits).item() | ||||
|  | ||||
|     def return_topK(self, K): | ||||
|         archs = Structure.gen_all(self.op_names, self.max_nodes, False) | ||||
|         pairs = [(self.get_log_prob(arch), arch) for arch in archs] | ||||
|         if K < 0 or K >= len(archs): | ||||
|             K = len(archs) | ||||
|         sorted_pairs = sorted(pairs, key=lambda x: -x[0]) | ||||
|         return_pairs = [sorted_pairs[_][1] for _ in range(K)] | ||||
|         return return_pairs | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         alphas = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|         with torch.no_grad(): | ||||
|             alphas_cpu = alphas.detach().cpu() | ||||
|  | ||||
|         feature = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             if isinstance(cell, SearchCell): | ||||
|                 if self.mode == "urs": | ||||
|                     feature = cell.forward_urs(feature) | ||||
|                 elif self.mode == "select": | ||||
|                     feature = cell.forward_select(feature, alphas_cpu) | ||||
|                 elif self.mode == "joint": | ||||
|                     feature = cell.forward_joint(feature, alphas) | ||||
|                 elif self.mode == "dynamic": | ||||
|                     feature = cell.forward_dynamic(feature, self.dynamic_cell) | ||||
|                 else: | ||||
|                     raise ValueError("invalid mode={:}".format(self.mode)) | ||||
|             else: | ||||
|                 feature = cell(feature) | ||||
|  | ||||
|         out = self.lastact(feature) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
|   | ||||
| @@ -7,133 +7,199 @@ import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from typing import List, Text, Dict | ||||
| from .search_cells     import NASNetSearchCell as SearchCell | ||||
| from .search_cells import NASNetSearchCell as SearchCell | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkSETN(nn.Module): | ||||
|     def __init__( | ||||
|         self, | ||||
|         C: int, | ||||
|         N: int, | ||||
|         steps: int, | ||||
|         multiplier: int, | ||||
|         stem_multiplier: int, | ||||
|         num_classes: int, | ||||
|         search_space: List[Text], | ||||
|         affine: bool, | ||||
|         track_running_stats: bool, | ||||
|     ): | ||||
|         super(NASNetworkSETN, self).__init__() | ||||
|         self._C = C | ||||
|         self._layerN = N | ||||
|         self._steps = steps | ||||
|         self._multiplier = multiplier | ||||
|         self.stem = nn.Sequential( | ||||
|             nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|             nn.BatchNorm2d(C * stem_multiplier), | ||||
|         ) | ||||
|  | ||||
|   def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int, | ||||
|                num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool): | ||||
|     super(NASNetworkSETN, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self._steps    = steps | ||||
|     self._multiplier = multiplier | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C*stem_multiplier)) | ||||
|    | ||||
|     # config for each layer | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1) | ||||
|     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) | ||||
|         # config for each layer | ||||
|         layer_channels = ( | ||||
|             [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) | ||||
|         ) | ||||
|         layer_reductions = ( | ||||
|             [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) | ||||
|         ) | ||||
|  | ||||
|     num_edge, edge2index = None, None | ||||
|     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False | ||||
|         num_edge, edge2index = None, None | ||||
|         C_prev_prev, C_prev, C_curr, reduction_prev = ( | ||||
|             C * stem_multiplier, | ||||
|             C * stem_multiplier, | ||||
|             C, | ||||
|             False, | ||||
|         ) | ||||
|  | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) | ||||
|       if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|       else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.mode = 'urs' | ||||
|     self.dynamic_cell = None | ||||
|         self.cells = nn.ModuleList() | ||||
|         for index, (C_curr, reduction) in enumerate( | ||||
|             zip(layer_channels, layer_reductions) | ||||
|         ): | ||||
|             cell = SearchCell( | ||||
|                 search_space, | ||||
|                 steps, | ||||
|                 multiplier, | ||||
|                 C_prev_prev, | ||||
|                 C_prev, | ||||
|                 C_curr, | ||||
|                 reduction, | ||||
|                 reduction_prev, | ||||
|                 affine, | ||||
|                 track_running_stats, | ||||
|             ) | ||||
|             if num_edge is None: | ||||
|                 num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|             else: | ||||
|                 assert ( | ||||
|                     num_edge == cell.num_edges and edge2index == cell.edge2index | ||||
|                 ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) | ||||
|             self.cells.append(cell) | ||||
|             C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction | ||||
|         self.op_names = deepcopy(search_space) | ||||
|         self._Layer = len(self.cells) | ||||
|         self.edge2index = edge2index | ||||
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|         self.arch_normal_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.arch_reduce_parameters = nn.Parameter( | ||||
|             1e-3 * torch.randn(num_edge, len(search_space)) | ||||
|         ) | ||||
|         self.mode = "urs" | ||||
|         self.dynamic_cell = None | ||||
|  | ||||
|   def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|     assert mode in ['urs', 'joint', 'select', 'dynamic'] | ||||
|     self.mode = mode | ||||
|     if mode == 'dynamic': | ||||
|       self.dynamic_cell = deepcopy(dynamic_cell) | ||||
|     else: | ||||
|       self.dynamic_cell = None | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() ) | ||||
|       B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() ) | ||||
|     return '{:}\n{:}'.format(A, B) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def dync_genotype(self, use_random=False): | ||||
|     genotypes = [] | ||||
|     with torch.no_grad(): | ||||
|       alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         if use_random: | ||||
|           op_name  = random.choice(self.op_names) | ||||
|     def set_cal_mode(self, mode, dynamic_cell=None): | ||||
|         assert mode in ["urs", "joint", "select", "dynamic"] | ||||
|         self.mode = mode | ||||
|         if mode == "dynamic": | ||||
|             self.dynamic_cell = deepcopy(dynamic_cell) | ||||
|         else: | ||||
|           weights  = alphas_cpu[ self.edge2index[node_str] ] | ||||
|           op_index = torch.multinomial(weights, 1).item() | ||||
|           op_name  = self.op_names[ op_index ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return Structure( genotypes ) | ||||
|             self.dynamic_cell = None | ||||
|  | ||||
|   def genotype(self): | ||||
|     def _parse(weights): | ||||
|       gene = [] | ||||
|       for i in range(self._steps): | ||||
|         edges = [] | ||||
|         for j in range(2+i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           ws = weights[ self.edge2index[node_str] ] | ||||
|           for k, op_name in enumerate(self.op_names): | ||||
|             if op_name == 'none': continue | ||||
|             edges.append( (op_name, j, ws[k]) ) | ||||
|         edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|         selected_edges = edges[:2] | ||||
|         gene.append( tuple(selected_edges) ) | ||||
|       return gene | ||||
|     with torch.no_grad(): | ||||
|       gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()) | ||||
|       gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()) | ||||
|     return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)), | ||||
|             'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))} | ||||
|     def get_weights(self): | ||||
|         xlist = list(self.stem.parameters()) + list(self.cells.parameters()) | ||||
|         xlist += list(self.lastact.parameters()) + list( | ||||
|             self.global_pooling.parameters() | ||||
|         ) | ||||
|         xlist += list(self.classifier.parameters()) | ||||
|         return xlist | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     normal_hardwts = nn.functional.softmax(self.arch_normal_parameters, dim=-1) | ||||
|     reduce_hardwts = nn.functional.softmax(self.arch_reduce_parameters, dim=-1) | ||||
|     def get_alphas(self): | ||||
|         return [self.arch_normal_parameters, self.arch_reduce_parameters] | ||||
|  | ||||
|     s0 = s1 = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       # [TODO] | ||||
|       raise NotImplementedError | ||||
|       if cell.reduction: hardwts, index = reduce_hardwts, reduce_index | ||||
|       else             : hardwts, index = normal_hardwts, normal_index | ||||
|       s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|     out = self.lastact(s1) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|     def show_alphas(self): | ||||
|         with torch.no_grad(): | ||||
|             A = "arch-normal-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|             B = "arch-reduce-parameters :\n{:}".format( | ||||
|                 nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() | ||||
|             ) | ||||
|         return "{:}\n{:}".format(A, B) | ||||
|  | ||||
|     return out, logits | ||||
|     def get_message(self): | ||||
|         string = self.extra_repr() | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             string += "\n {:02d}/{:02d} :: {:}".format( | ||||
|                 i, len(self.cells), cell.extra_repr() | ||||
|             ) | ||||
|         return string | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format( | ||||
|             name=self.__class__.__name__, **self.__dict__ | ||||
|         ) | ||||
|  | ||||
|     def dync_genotype(self, use_random=False): | ||||
|         genotypes = [] | ||||
|         with torch.no_grad(): | ||||
|             alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|         for i in range(1, self.max_nodes): | ||||
|             xlist = [] | ||||
|             for j in range(i): | ||||
|                 node_str = "{:}<-{:}".format(i, j) | ||||
|                 if use_random: | ||||
|                     op_name = random.choice(self.op_names) | ||||
|                 else: | ||||
|                     weights = alphas_cpu[self.edge2index[node_str]] | ||||
|                     op_index = torch.multinomial(weights, 1).item() | ||||
|                     op_name = self.op_names[op_index] | ||||
|                 xlist.append((op_name, j)) | ||||
|             genotypes.append(tuple(xlist)) | ||||
|         return Structure(genotypes) | ||||
|  | ||||
|     def genotype(self): | ||||
|         def _parse(weights): | ||||
|             gene = [] | ||||
|             for i in range(self._steps): | ||||
|                 edges = [] | ||||
|                 for j in range(2 + i): | ||||
|                     node_str = "{:}<-{:}".format(i, j) | ||||
|                     ws = weights[self.edge2index[node_str]] | ||||
|                     for k, op_name in enumerate(self.op_names): | ||||
|                         if op_name == "none": | ||||
|                             continue | ||||
|                         edges.append((op_name, j, ws[k])) | ||||
|                 edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|                 selected_edges = edges[:2] | ||||
|                 gene.append(tuple(selected_edges)) | ||||
|             return gene | ||||
|  | ||||
|         with torch.no_grad(): | ||||
|             gene_normal = _parse( | ||||
|                 torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|             gene_reduce = _parse( | ||||
|                 torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy() | ||||
|             ) | ||||
|         return { | ||||
|             "normal": gene_normal, | ||||
|             "normal_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|             "reduce": gene_reduce, | ||||
|             "reduce_concat": list( | ||||
|                 range(2 + self._steps - self._multiplier, self._steps + 2) | ||||
|             ), | ||||
|         } | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         normal_hardwts = nn.functional.softmax(self.arch_normal_parameters, dim=-1) | ||||
|         reduce_hardwts = nn.functional.softmax(self.arch_reduce_parameters, dim=-1) | ||||
|  | ||||
|         s0 = s1 = self.stem(inputs) | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             # [TODO] | ||||
|             raise NotImplementedError | ||||
|             if cell.reduction: | ||||
|                 hardwts, index = reduce_hardwts, reduce_index | ||||
|             else: | ||||
|                 hardwts, index = normal_hardwts, normal_index | ||||
|             s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|         out = self.lastact(s1) | ||||
|         out = self.global_pooling(out) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|  | ||||
|         return out, logits | ||||
|   | ||||
		Reference in New Issue
	
	Block a user