clean headers
This commit is contained in:
		| @@ -1,6 +1,3 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|   | ||||
| @@ -1,6 +1,3 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import torch | ||||
| from os import path as osp | ||||
|  | ||||
|   | ||||
| @@ -1,6 +1,3 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
|   | ||||
| @@ -1,6 +1,3 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from ..cell_operations import ResNetBasicblock | ||||
|   | ||||
| @@ -60,6 +60,24 @@ class Structure: | ||||
|       strings.append( string ) | ||||
|     return '+'.join(strings) | ||||
|  | ||||
|   def to_unique_str(self, consider_zero=False): | ||||
|     # this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation | ||||
|     # two operations are special, i.e., none and skip_connect | ||||
|     nodes = {0: '0'} | ||||
|     for i_node, node_info in enumerate(self.nodes): | ||||
|       cur_node = [] | ||||
|       for op, xin in node_info: | ||||
|         if consider_zero: | ||||
|           if op == 'none' or nodes[xin] == '#': x = '#' # zero | ||||
|           elif op == 'skip_connect': x = nodes[xin] | ||||
|           else: x = nodes[xin] + '@{:}'.format(op) | ||||
|         else: | ||||
|           if op == 'skip_connect': x = nodes[xin] | ||||
|           else: x = nodes[xin] + '@{:}'.format(op) | ||||
|         cur_node.append(x) | ||||
|       nodes[i_node+1] = '+'.join( sorted(cur_node) ) | ||||
|     return nodes[ len(self.nodes) ] | ||||
|  | ||||
|   def check_valid_op(self, op_names): | ||||
|     for node_info in self.nodes: | ||||
|       for inode_edge in node_info: | ||||
|   | ||||
| @@ -1,5 +1,3 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ######################################################## | ||||
| # DARTS: Differentiable Architecture Search, ICLR 2019 # | ||||
| ######################################################## | ||||
|   | ||||
| @@ -1,5 +1,3 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ######################################################## | ||||
| # DARTS: Differentiable Architecture Search, ICLR 2019 # | ||||
| ######################################################## | ||||
|   | ||||
| @@ -1,5 +1,3 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ########################################################################## | ||||
| # Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 # | ||||
| ########################################################################## | ||||
|   | ||||
| @@ -1,5 +1,3 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ########################################################################## | ||||
| # Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 # | ||||
| ########################################################################## | ||||
|   | ||||
| @@ -1,5 +1,3 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ########################################################################### | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||
| ########################################################################### | ||||
|   | ||||
| @@ -1,5 +1,3 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ###################################################################################### | ||||
| # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 # | ||||
| ###################################################################################### | ||||
|   | ||||
| @@ -1,5 +1,3 @@ | ||||
| # Xuanyi Dong | ||||
|  | ||||
| def parse_channel_info(xstring): | ||||
|   blocks = xstring.split(' ') | ||||
|   blocks = [x.split('-') for x in blocks] | ||||
|   | ||||
		Reference in New Issue
	
	Block a user