Support GDAS (FRC), see details in docs/CVPR-2019-GDAS.md
This commit is contained in:
		
							
								
								
									
										9
									
								
								configs/search-archs/GDASFRC-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								configs/search-archs/GDASFRC-NASNet-CIFAR.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,9 @@ | ||||
| { | ||||
|   "super_type"      : ["str",  "nasnet-super"], | ||||
|   "name"            : ["str",  "GDAS_FRC"], | ||||
|   "C"               : ["int",  "16"  ], | ||||
|   "N"               : ["int",  "2"  ], | ||||
|   "steps"           : ["int",  "4"  ], | ||||
|   "multiplier"      : ["int",  "4"  ], | ||||
|   "stem_multiplier" : ["int",  "3"  ] | ||||
| } | ||||
| @@ -37,9 +37,14 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_ | ||||
| If you are interested in the configs of each NAS-searched architecture, they are defined at [genotypes.py](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py). | ||||
|  | ||||
| ### Searching on the NASNet search space | ||||
|  | ||||
| Please use the following scripts to use GDAS to search as in the original paper: | ||||
| ``` | ||||
| # search for both normal and reduction cells | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NASNet-space-search-by-GDAS.sh cifar10 1 -1 | ||||
|  | ||||
| # search for the normal cell while use a fixed reduction cell | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NASNet-space-search-by-GDAS-FRC.sh cifar10 1 -1 | ||||
| ``` | ||||
|  | ||||
| **After searching**, if you want to re-train the searched architecture found by the above script, you can use the following script: | ||||
| @@ -52,7 +57,9 @@ Note that `gdas-searched` is a string to indicate the name of the saved dir and | ||||
| The above script does not apply heavy augmentation to train the model, so the accuracy will be lower than the original paper. | ||||
| If you want to change the default hyper-parameter for re-training, please have a look at `./scripts/retrain-searched-net.sh` and `configs/archs/NAS-*-none.config`. | ||||
|  | ||||
|  | ||||
| ### Searching on a small search space (NAS-Bench-201) | ||||
|  | ||||
| The GDAS searching codes on a small search space: | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 1 -1 | ||||
|   | ||||
| @@ -4,7 +4,7 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
| __all__ = ['OPS', 'ResNetBasicblock', 'SearchSpaceNames'] | ||||
| __all__ = ['OPS', 'RAW_OP_CLASSES', 'ResNetBasicblock', 'SearchSpaceNames'] | ||||
|  | ||||
| OPS = { | ||||
|   'none'         : lambda C_in, C_out, stride, affine, track_running_stats: Zero(C_in, C_out, stride), | ||||
| @@ -175,7 +175,7 @@ class FactorizedReduce(nn.Module): | ||||
|         self.convs.append(nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=not affine)) | ||||
|       self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) | ||||
|     elif stride == 1: | ||||
|       self.conv = nn.Conv2d(C_in, C_out, 1, stride=stride, padding=0, bias=False) | ||||
|       self.conv = nn.Conv2d(C_in, C_out, 1, stride=stride, padding=0, bias=not affine) | ||||
|     else: | ||||
|       raise ValueError('Invalid stride : {:}'.format(stride)) | ||||
|     self.bn = nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats) | ||||
| @@ -256,41 +256,44 @@ def drop_path(x, drop_prob): | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours | ||||
| class GDAS_Reduction_Cell(nn.Module): | ||||
|  | ||||
|   def __init__(self, C_prev_prev, C_prev, C, reduction_prev, multiplier, affine, track_running_stats): | ||||
|   def __init__(self, C_prev_prev, C_prev, C, reduction_prev, affine, track_running_stats): | ||||
|     super(GDAS_Reduction_Cell, self).__init__() | ||||
|     if reduction_prev: | ||||
|       self.preprocess0 = FactorizedReduce(C_prev_prev, C, 2, affine, track_running_stats) | ||||
|     else: | ||||
|       self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats) | ||||
|     self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, 1, affine, track_running_stats) | ||||
|     self.multiplier  = multiplier | ||||
|  | ||||
|     self.reduction = True | ||||
|     self.ops1 = nn.ModuleList( | ||||
|                   [nn.Sequential( | ||||
|                       nn.ReLU(inplace=False), | ||||
|                       nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False), | ||||
|                       nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False), | ||||
|                       nn.BatchNorm2d(C, affine=True), | ||||
|                       nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=not affine), | ||||
|                       nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=not affine), | ||||
|                       nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats), | ||||
|                       nn.ReLU(inplace=False), | ||||
|                       nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False), | ||||
|                       nn.BatchNorm2d(C, affine=True)), | ||||
|                       nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine), | ||||
|                       nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats)), | ||||
|                    nn.Sequential( | ||||
|                       nn.ReLU(inplace=False), | ||||
|                       nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False), | ||||
|                       nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False), | ||||
|                       nn.BatchNorm2d(C, affine=True), | ||||
|                       nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=not affine), | ||||
|                       nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=not affine), | ||||
|                       nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats), | ||||
|                       nn.ReLU(inplace=False), | ||||
|                       nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False), | ||||
|                       nn.BatchNorm2d(C, affine=True))]) | ||||
|                       nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine), | ||||
|                       nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats))]) | ||||
|  | ||||
|     self.ops2 = nn.ModuleList( | ||||
|                   [nn.Sequential( | ||||
|                       nn.MaxPool2d(3, stride=1, padding=1), | ||||
|                       nn.BatchNorm2d(C, affine=True)), | ||||
|                       nn.MaxPool2d(3, stride=2, padding=1), | ||||
|                       nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats)), | ||||
|                    nn.Sequential( | ||||
|                       nn.MaxPool2d(3, stride=2, padding=1), | ||||
|                       nn.BatchNorm2d(C, affine=True))]) | ||||
|                       nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats))]) | ||||
|  | ||||
|   @property | ||||
|   def multiplier(self): | ||||
|     return 4 | ||||
|  | ||||
|   def forward(self, s0, s1, drop_prob = -1): | ||||
|     s0 = self.preprocess0(s0) | ||||
| @@ -307,3 +310,10 @@ class GDAS_Reduction_Cell(nn.Module): | ||||
|     if self.training and drop_prob > 0.: | ||||
|       X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob) | ||||
|     return torch.cat([X0, X1, X2, X3], dim=1) | ||||
|  | ||||
|  | ||||
| # To manage the useful classes in this file. | ||||
| RAW_OP_CLASSES = { | ||||
|   'gdas_reduction': GDAS_Reduction_Cell | ||||
| } | ||||
|  | ||||
|   | ||||
| @@ -11,6 +11,7 @@ from .generic_model         import GenericNAS201Model | ||||
| from .genotypes             import Structure as CellStructure, architectures as CellArchitectures | ||||
| # NASNet-based macro structure | ||||
| from .search_model_gdas_nasnet import NASNetworkGDAS | ||||
| from .search_model_gdas_frc_nasnet import NASNetworkGDAS_FRC | ||||
| from .search_model_darts_nasnet import NASNetworkDARTS | ||||
|  | ||||
|  | ||||
| @@ -23,4 +24,5 @@ nas201_super_nets = {'DARTS-V1': TinyNetworkDarts, | ||||
|                      "generic": GenericNAS201Model} | ||||
|  | ||||
| nasnet_super_nets = {"GDAS": NASNetworkGDAS, | ||||
|                      "GDAS_FRC": NASNetworkGDAS_FRC, | ||||
|                      "DARTS": NASNetworkDARTS} | ||||
|   | ||||
| @@ -163,6 +163,10 @@ class NASNetSearchCell(nn.Module): | ||||
|     self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} | ||||
|     self.num_edges  = len(self.edges) | ||||
|  | ||||
|   @property | ||||
|   def multiplier(self): | ||||
|     return self._multiplier | ||||
|  | ||||
|   def forward_gdas(self, s0, s1, weightss, indexs): | ||||
|     s0 = self.preprocess0(s0) | ||||
|     s1 = self.preprocess1(s1) | ||||
|   | ||||
							
								
								
									
										125
									
								
								lib/models/cell_searchs/search_model_gdas_frc_nasnet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										125
									
								
								lib/models/cell_searchs/search_model_gdas_frc_nasnet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,125 @@ | ||||
| ########################################################################### | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||
| ########################################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from copy import deepcopy | ||||
| from models.cell_searchs.search_cells import NASNetSearchCell as SearchCell | ||||
| from models.cell_operations import RAW_OP_CLASSES | ||||
|  | ||||
|  | ||||
| # The macro structure is based on NASNet | ||||
| class NASNetworkGDAS_FRC(nn.Module): | ||||
|  | ||||
|   def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats): | ||||
|     super(NASNetworkGDAS_FRC, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self._steps    = steps | ||||
|     self._multiplier = multiplier | ||||
|     self.stem = nn.Sequential( | ||||
|                     nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), | ||||
|                     nn.BatchNorm2d(C*stem_multiplier)) | ||||
|    | ||||
|     # config for each layer | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1) | ||||
|     layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) | ||||
|  | ||||
|     num_edge, edge2index = None, None | ||||
|     C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False | ||||
|  | ||||
|     self.cells = nn.ModuleList() | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       if reduction: | ||||
|         cell = RAW_OP_CLASSES['gdas_reduction'](C_prev_prev, C_prev, C_curr, reduction_prev, affine, track_running_stats) | ||||
|       else: | ||||
|         cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) | ||||
|       if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|       else: assert reduction or num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       self.cells.append( cell ) | ||||
|       C_prev_prev, C_prev, reduction_prev = C_prev, cell.multiplier * C_curr, reduction | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self._Layer     = len(self.cells) | ||||
|     self.edge2index = edge2index | ||||
|     self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) | ||||
|     self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|     self.classifier = nn.Linear(C_prev, num_classes) | ||||
|     self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     self.tau        = 10 | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) | ||||
|     xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) | ||||
|     xlist+= list( self.classifier.parameters() ) | ||||
|     return xlist | ||||
|  | ||||
|   def set_tau(self, tau): | ||||
|     self.tau = tau | ||||
|  | ||||
|   def get_tau(self): | ||||
|     return self.tau | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     return [self.arch_parameters] | ||||
|  | ||||
|   def show_alphas(self): | ||||
|     with torch.no_grad(): | ||||
|       A = 'arch-normal-parameters :\n{:}'.format(nn.functional.softmax(self.arch_parameters, dim=-1).cpu()) | ||||
|     return '{:}'.format(A) | ||||
|  | ||||
|   def get_message(self): | ||||
|     string = self.extra_repr() | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) | ||||
|     return string | ||||
|  | ||||
|   def extra_repr(self): | ||||
|     return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|   def genotype(self): | ||||
|     def _parse(weights): | ||||
|       gene = [] | ||||
|       for i in range(self._steps): | ||||
|         edges = [] | ||||
|         for j in range(2+i): | ||||
|           node_str = '{:}<-{:}'.format(i, j) | ||||
|           ws = weights[ self.edge2index[node_str] ] | ||||
|           for k, op_name in enumerate(self.op_names): | ||||
|             if op_name == 'none': continue | ||||
|             edges.append( (op_name, j, ws[k]) ) | ||||
|         edges = sorted(edges, key=lambda x: -x[-1]) | ||||
|         selected_edges = edges[:2] | ||||
|         gene.append( tuple(selected_edges) ) | ||||
|       return gene | ||||
|     with torch.no_grad(): | ||||
|       gene_normal = _parse(torch.softmax(self.arch_parameters, dim=-1).cpu().numpy()) | ||||
|     return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2))} | ||||
|  | ||||
|   def forward(self, inputs): | ||||
|     def get_gumbel_prob(xins): | ||||
|       while True: | ||||
|         gumbels = -torch.empty_like(xins).exponential_().log() | ||||
|         logits  = (xins.log_softmax(dim=1) + gumbels) / self.tau | ||||
|         probs   = nn.functional.softmax(logits, dim=1) | ||||
|         index   = probs.max(-1, keepdim=True)[1] | ||||
|         one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0) | ||||
|         hardwts = one_h - probs.detach() + probs | ||||
|         if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): | ||||
|           continue | ||||
|         else: break | ||||
|       return hardwts, index | ||||
|  | ||||
|     hardwts, index = get_gumbel_prob(self.arch_parameters) | ||||
|  | ||||
|     s0 = s1 = self.stem(inputs) | ||||
|     for i, cell in enumerate(self.cells): | ||||
|       if cell.reduction: | ||||
|         s0, s1 = s1, cell(s0, s1) | ||||
|       else:  | ||||
|         s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) | ||||
|     out = self.lastact(s1) | ||||
|     out = self.global_pooling( out ) | ||||
|     out = out.view(out.size(0), -1) | ||||
|     logits = self.classifier(out) | ||||
|  | ||||
|     return out, logits | ||||
							
								
								
									
										38
									
								
								scripts-search/NASNet-space-search-by-GDAS-FRC.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										38
									
								
								scripts-search/NASNet-space-search-by-GDAS-FRC.sh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,38 @@ | ||||
| #!/bin/bash | ||||
| # bash ./scripts-search/NASNet-space-search-by-GDAS-FRC.sh cifar10 1 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 3 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 3 parameters for dataset, track_running_stats, and seed" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| dataset=$1 | ||||
| track_running_stats=$2 | ||||
| seed=$3 | ||||
| space=darts | ||||
|  | ||||
| if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then | ||||
|   data_path="$TORCH_HOME/cifar.python" | ||||
| else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/search-cell-${space}/GDAS-${dataset}-BN${track_running_stats} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/GDAS.py \ | ||||
| 	--save_dir ${save_dir} \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--config_path  configs/search-opts/GDAS-NASNet-CIFAR.config \ | ||||
| 	--model_config configs/search-archs/GDASFRC-NASNet-CIFAR.config \ | ||||
| 	--tau_max 10 --tau_min 0.1 --track_running_stats ${track_running_stats} \ | ||||
| 	--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
		Reference in New Issue
	
	Block a user