##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # ##################################################### import torch import torch.nn as nn from copy import deepcopy from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR # The macro structure is based on NASNet class NASNetonCIFAR(nn.Module): def __init__( self, C, N, stem_multiplier, num_classes, genotype, auxiliary, affine=True, track_running_stats=True, ): super(NASNetonCIFAR, self).__init__() self._C = C self._layerN = N self.stem = nn.Sequential( nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C * stem_multiplier), ) # config for each layer layer_channels = ( [C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1) ) layer_reductions = ( [False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1) ) C_prev_prev, C_prev, C_curr, reduction_prev = ( C * stem_multiplier, C * stem_multiplier, C, False, ) self.auxiliary_index = None self.auxiliary_head = None self.cells = nn.ModuleList() for index, (C_curr, reduction) in enumerate( zip(layer_channels, layer_reductions) ): cell = InferCell( genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats, ) self.cells.append(cell) C_prev_prev, C_prev, reduction_prev = ( C_prev, cell._multiplier * C_curr, reduction, ) if reduction and C_curr == C * 4 and auxiliary: self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes) self.auxiliary_index = index self._Layer = len(self.cells) self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) self.global_pooling = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Linear(C_prev, num_classes) self.drop_path_prob = -1 def update_drop_path(self, drop_path_prob): self.drop_path_prob = drop_path_prob def auxiliary_param(self): if self.auxiliary_head is None: return [] else: return list(self.auxiliary_head.parameters()) def get_message(self): string = self.extra_repr() for i, cell in enumerate(self.cells): string += "\n {:02d}/{:02d} :: {:}".format( i, len(self.cells), cell.extra_repr() ) return string def extra_repr(self): return "{name}(C={_C}, N={_layerN}, L={_Layer})".format( name=self.__class__.__name__, **self.__dict__ ) def forward(self, inputs): stem_feature, logits_aux = self.stem(inputs), None cell_results = [stem_feature, stem_feature] for i, cell in enumerate(self.cells): cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob) cell_results.append(cell_feature) if ( self.auxiliary_index is not None and i == self.auxiliary_index and self.training ): logits_aux = self.auxiliary_head(cell_results[-1]) out = self.lastact(cell_results[-1]) out = self.global_pooling(out) out = out.view(out.size(0), -1) logits = self.classifier(out) if logits_aux is None: return out, logits else: return out, [logits, logits_aux]