##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # ###################################################################################### # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 # ###################################################################################### import torch, random import torch.nn as nn from copy import deepcopy from ..cell_operations import ResNetBasicblock from .search_cells import NAS201SearchCell as SearchCell from .genotypes import Structure class TinyNetworkSETN(nn.Module): def __init__( self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats ): super(TinyNetworkSETN, self).__init__() self._C = C self._layerN = N self.max_nodes = max_nodes self.stem = nn.Sequential( nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) ) layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N C_prev, num_edge, edge2index = C, None, None self.cells = nn.ModuleList() for index, (C_curr, reduction) in enumerate( zip(layer_channels, layer_reductions) ): if reduction: cell = ResNetBasicblock(C_prev, C_curr, 2) else: cell = SearchCell( C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats, ) if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index else: assert ( num_edge == cell.num_edges and edge2index == cell.edge2index ), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges) self.cells.append(cell) C_prev = cell.out_dim self.op_names = deepcopy(search_space) self._Layer = len(self.cells) self.edge2index = edge2index self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) self.global_pooling = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Linear(C_prev, num_classes) self.arch_parameters = nn.Parameter( 1e-3 * torch.randn(num_edge, len(search_space)) ) self.mode = "urs" self.dynamic_cell = None def set_cal_mode(self, mode, dynamic_cell=None): assert mode in ["urs", "joint", "select", "dynamic"] self.mode = mode if mode == "dynamic": self.dynamic_cell = deepcopy(dynamic_cell) else: self.dynamic_cell = None def get_cal_mode(self): return self.mode def get_weights(self): xlist = list(self.stem.parameters()) + list(self.cells.parameters()) xlist += list(self.lastact.parameters()) + list( self.global_pooling.parameters() ) xlist += list(self.classifier.parameters()) return xlist def get_alphas(self): return [self.arch_parameters] def get_message(self): string = self.extra_repr() for i, cell in enumerate(self.cells): string += "\n {:02d}/{:02d} :: {:}".format( i, len(self.cells), cell.extra_repr() ) return string def extra_repr(self): return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format( name=self.__class__.__name__, **self.__dict__ ) def genotype(self): genotypes = [] for i in range(1, self.max_nodes): xlist = [] for j in range(i): node_str = "{:}<-{:}".format(i, j) with torch.no_grad(): weights = self.arch_parameters[self.edge2index[node_str]] op_name = self.op_names[weights.argmax().item()] xlist.append((op_name, j)) genotypes.append(tuple(xlist)) return Structure(genotypes) def dync_genotype(self, use_random=False): genotypes = [] with torch.no_grad(): alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) for i in range(1, self.max_nodes): xlist = [] for j in range(i): node_str = "{:}<-{:}".format(i, j) if use_random: op_name = random.choice(self.op_names) else: weights = alphas_cpu[self.edge2index[node_str]] op_index = torch.multinomial(weights, 1).item() op_name = self.op_names[op_index] xlist.append((op_name, j)) genotypes.append(tuple(xlist)) return Structure(genotypes) def get_log_prob(self, arch): with torch.no_grad(): logits = nn.functional.log_softmax(self.arch_parameters, dim=-1) select_logits = [] for i, node_info in enumerate(arch.nodes): for op, xin in node_info: node_str = "{:}<-{:}".format(i + 1, xin) op_index = self.op_names.index(op) select_logits.append(logits[self.edge2index[node_str], op_index]) return sum(select_logits).item() def return_topK(self, K): archs = Structure.gen_all(self.op_names, self.max_nodes, False) pairs = [(self.get_log_prob(arch), arch) for arch in archs] if K < 0 or K >= len(archs): K = len(archs) sorted_pairs = sorted(pairs, key=lambda x: -x[0]) return_pairs = [sorted_pairs[_][1] for _ in range(K)] return return_pairs def forward(self, inputs): alphas = nn.functional.softmax(self.arch_parameters, dim=-1) with torch.no_grad(): alphas_cpu = alphas.detach().cpu() feature = self.stem(inputs) for i, cell in enumerate(self.cells): if isinstance(cell, SearchCell): if self.mode == "urs": feature = cell.forward_urs(feature) elif self.mode == "select": feature = cell.forward_select(feature, alphas_cpu) elif self.mode == "joint": feature = cell.forward_joint(feature, alphas) elif self.mode == "dynamic": feature = cell.forward_dynamic(feature, self.dynamic_cell) else: raise ValueError("invalid mode={:}".format(self.mode)) else: feature = cell(feature) out = self.lastact(feature) out = self.global_pooling(out) out = out.view(out.size(0), -1) logits = self.classifier(out) return out, logits