#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
from typing import List, Text, Any
import torch.nn as nn
from models.cell_operations import ResNetBasicblock
from models.cell_infers.cells import InferCell


class DynamicShapeTinyNet(nn.Module):

  def __init__(self, channels: List[int], genotype: Any, num_classes: int):
    super(DynamicShapeTinyNet, self).__init__()
    self._channels = channels
    if len(channels) % 3 != 2:
      raise ValueError('invalid number of layers : {:}'.format(len(channels)))
    self._num_stage = N = len(channels) // 3

    self.stem = nn.Sequential(
                    nn.Conv2d(3, channels[0], kernel_size=3, padding=1, bias=False),
                    nn.BatchNorm2d(channels[0]))

    # layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N    
    layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N

    c_prev = channels[0]
    self.cells = nn.ModuleList()
    for index, (c_curr, reduction) in enumerate(zip(channels, layer_reductions)):
      if reduction : cell = ResNetBasicblock(c_prev, c_curr, 2, True)
      else         : cell = InferCell(genotype, c_prev, c_curr, 1)
      self.cells.append( cell )
      c_prev = cell.out_dim
    self._num_layer = len(self.cells)

    self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev), nn.ReLU(inplace=True))
    self.global_pooling = nn.AdaptiveAvgPool2d(1)
    self.classifier = nn.Linear(c_prev, num_classes)

  def get_message(self) -> Text:
    string = self.extra_repr()
    for i, cell in enumerate(self.cells):
      string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
    return string

  def extra_repr(self):
    return ('{name}(C={_channels}, N={_num_stage}, L={_num_layer})'.format(name=self.__class__.__name__, **self.__dict__))

  def forward(self, inputs):
    feature = self.stem(inputs)
    for i, cell in enumerate(self.cells):
      feature = cell(feature)

    out = self.lastact(feature)
    out = self.global_pooling( out )
    out = out.view(out.size(0), -1)
    logits = self.classifier(out)

    return out, logits