##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
###################################################################
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale #
# required to install hpbandster ##################################
# pip install hpbandster         ##################################
###################################################################
# bash ./scripts-search/algos/BOHB.sh -1         ##################
###################################################################
import os, sys, time, random, argparse
from copy import deepcopy
from pathlib import Path
import torch
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config
from datasets     import get_datasets, SearchDataset
from procedures   import prepare_seed, prepare_logger
from log_utils    import AverageMeter, time_string, convert_secs2time
from nas_201_api  import NASBench201API as API
from models       import CellStructure, get_search_spaces
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
import ConfigSpace
from hpbandster.optimizers.bohb import BOHB
import hpbandster.core.nameserver as hpns
from hpbandster.core.worker import Worker


def get_configuration_space(max_nodes, search_space):
  cs = ConfigSpace.ConfigurationSpace()
  #edge2index   = {}
  for i in range(1, max_nodes):
    for j in range(i):
      node_str = '{:}<-{:}'.format(i, j)
      cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter(node_str, search_space))
  return cs


def config2structure_func(max_nodes):
  def config2structure(config):
    genotypes = []
    for i in range(1, max_nodes):
      xlist = []
      for j in range(i):
        node_str = '{:}<-{:}'.format(i, j)
        op_name = config[node_str]
        xlist.append((op_name, j))
      genotypes.append( tuple(xlist) )
    return CellStructure( genotypes )
  return config2structure


class MyWorker(Worker):

  def __init__(self, *args, convert_func=None, dataname=None, nas_bench=None, time_budget=None, **kwargs):
    super().__init__(*args, **kwargs)
    self.convert_func   = convert_func
    self._dataname      = dataname
    self._nas_bench     = nas_bench
    self.time_budget    = time_budget
    self.seen_archs     = []
    self.sim_cost_time  = 0
    self.real_cost_time = 0
    self.is_end         = False

  def get_the_best(self):
    assert len(self.seen_archs) > 0
    best_index, best_acc = -1, None
    for arch_index in self.seen_archs:
      info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True)
      vacc = info['valid-accuracy']
      if best_acc is None or best_acc < vacc:
        best_acc = vacc
        best_index = arch_index
    assert best_index != -1
    return best_index

  def compute(self, config, budget, **kwargs):
    start_time = time.time()
    structure  = self.convert_func( config )
    arch_index = self._nas_bench.query_index_by_arch( structure )
    info       = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True)
    cur_time   = info['train-all-time'] + info['valid-per-time']
    cur_vacc   = info['valid-accuracy']
    self.real_cost_time += (time.time() - start_time)
    if self.sim_cost_time + cur_time <= self.time_budget and not self.is_end:
      self.sim_cost_time += cur_time
      self.seen_archs.append( arch_index )
      return ({'loss': 100 - float(cur_vacc),
               'info': {'seen-arch'     : len(self.seen_archs),
                        'sim-test-time' : self.sim_cost_time,
                        'current-arch'  : arch_index}
            })
    else:
      self.is_end = True
      return ({'loss': 100,
               'info': {'seen-arch'     : len(self.seen_archs),
                        'sim-test-time' : self.sim_cost_time,
                        'current-arch'  : None}
            })


def main(xargs, nas_bench):
  assert torch.cuda.is_available(), 'CUDA is not available.'
  torch.backends.cudnn.enabled   = True
  torch.backends.cudnn.benchmark = False
  torch.backends.cudnn.deterministic = True
  torch.set_num_threads( xargs.workers )
  prepare_seed(xargs.rand_seed)
  logger = prepare_logger(args)

  if xargs.dataset == 'cifar10':
    dataname = 'cifar10-valid'
  else:
    dataname = xargs.dataset
  if xargs.data_path is not None:
    train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
    split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
    cifar_split = load_config(split_Fpath, None, None)
    train_split, valid_split = cifar_split.train, cifar_split.valid
    logger.log('Load split file from {:}'.format(split_Fpath))
    config_path = 'configs/nas-benchmark/algos/R-EA.config'
    config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
    # To split data
    train_data_v2 = deepcopy(train_data)
    train_data_v2.transform = valid_data.transform
    valid_data    = train_data_v2
    search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
    # data loader
    train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
    valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
    logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
    logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
    extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
  else:
    config_path = 'configs/nas-benchmark/algos/R-EA.config'
    config = load_config(config_path, None, logger)
    logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
    extra_info = {'config': config, 'train_loader': None, 'valid_loader': None}

  # nas dataset load
  assert xargs.arch_nas_dataset is not None and os.path.isfile(xargs.arch_nas_dataset)
  search_space = get_search_spaces('cell', xargs.search_space_name)
  cs = get_configuration_space(xargs.max_nodes, search_space)

  config2structure = config2structure_func(xargs.max_nodes)
  hb_run_id = '0'

  NS = hpns.NameServer(run_id=hb_run_id, host='localhost', port=0)
  ns_host, ns_port = NS.start()
  num_workers = 1

  #nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
  #logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string()))
  workers = []
  for i in range(num_workers):
    w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, dataname=dataname, nas_bench=nas_bench, time_budget=xargs.time_budget, run_id=hb_run_id, id=i)
    w.run(background=True)
    workers.append(w)

  start_time = time.time()
  bohb = BOHB(configspace=cs,
            run_id=hb_run_id,
            eta=3, min_budget=12, max_budget=200,
            nameserver=ns_host,
            nameserver_port=ns_port,
            num_samples=xargs.num_samples,
            random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor,
            ping_interval=10, min_bandwidth=xargs.min_bandwidth)
  
  results = bohb.run(xargs.n_iters, min_n_workers=num_workers)

  bohb.shutdown(shutdown_workers=True)
  NS.shutdown()

  real_cost_time = time.time() - start_time

  id2config = results.get_id2config_mapping()
  incumbent = results.get_incumbent_id()
  logger.log('Best found configuration: {:} within {:.3f} s'.format(id2config[incumbent]['config'], real_cost_time))
  best_arch = config2structure( id2config[incumbent]['config'] )

  info = nas_bench.query_by_arch(best_arch, '200')
  if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
  else           : logger.log('{:}'.format(info))
  logger.log('-'*100)

  logger.log('workers : {:.1f}s with {:} archs'.format(workers[0].time_budget, len(workers[0].seen_archs)))
  logger.close()
  return logger.log_dir, nas_bench.query_index_by_arch( best_arch ), real_cost_time
  


if __name__ == '__main__':
  parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
  parser.add_argument('--data_path',          type=str,   help='Path to dataset')
  parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
  # channels and number-of-cells
  parser.add_argument('--search_space_name',  type=str,   help='The search space name.')
  parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.')
  parser.add_argument('--channel',            type=int,   help='The number of channels.')
  parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.')
  parser.add_argument('--time_budget',        type=int,   help='The total time cost budge for searching (in seconds).')
  # BOHB
  parser.add_argument('--strategy', default="sampling",  type=str, nargs='?', help='optimization strategy for the acquisition function')
  parser.add_argument('--min_bandwidth',    default=.3,  type=float, nargs='?', help='minimum bandwidth for KDE')
  parser.add_argument('--num_samples',      default=64,  type=int, nargs='?', help='number of samples for the acquisition function')
  parser.add_argument('--random_fraction',  default=.33, type=float, nargs='?', help='fraction of random configurations')
  parser.add_argument('--bandwidth_factor', default=3,   type=int, nargs='?', help='factor multiplied to the bandwidth')
  parser.add_argument('--n_iters',          default=100, type=int, nargs='?', help='number of iterations for optimization method')
  # log
  parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)')
  parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.')
  parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).')
  parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)')
  parser.add_argument('--rand_seed',          type=int,   help='manual seed')
  args = parser.parse_args()
  #if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
  if args.arch_nas_dataset is None or not os.path.isfile(args.arch_nas_dataset):
    nas_bench = None
  else:
    print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
    nas_bench = API(args.arch_nas_dataset)
  if args.rand_seed < 0:
    save_dir, all_indexes, num, all_times = None, [], 500, []
    for i in range(num):
      print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num))
      args.rand_seed = random.randint(1, 100000)
      save_dir, index, ctime = main(args, nas_bench)
      all_indexes.append( index ) 
      all_times.append( ctime )
    print ('\n average time : {:.3f} s'.format(sum(all_times)/len(all_times)))
    torch.save(all_indexes, save_dir / 'results.pth')
  else:
    main(args, nas_bench)