<p align="center"> <img src="https://xuanyidong.com/resources/images/AutoDL-log.png" width="400"/> </p> --------- [](LICENSE.md) Automated Deep Learning Projects (AutoDL-Projects) is an open source, lightweight, but useful project for everyone. This project implemented several neural architecture search (NAS) and hyper-parameter optimization (HPO) algorithms. 中文介绍见[README_CN.md](https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/README_CN.md) **Who should consider using AutoDL-Projects** - Beginners who want to **try different AutoDL algorithms** - Engineers who want to **try AutoDL** to investigate whether AutoDL works on your projects - Researchers who want to **easily** implement and experiement **new** AutoDL algorithms. **Why should we use AutoDL-Projects** - Simple library dependencies - All algorithms are in the same codebase - Active maintenance ## AutoDL-Projects Capabilities At this moment, this project provides the following algorithms and scripts to run them. Please see the details in the link provided in the description column. <table> <tbody> <tr align="center" valign="bottom"> <th>Type</th> <th>ABBRV</th> <th>Algorithms</th> <th>Description</th> </tr> <tr> <!-- (1-st row) --> <td rowspan="6" align="center" valign="middle" halign="middle"> NAS </td> <td align="center" valign="middle"> TAS </td> <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1905.09717">Network Pruning via Transformable Architecture Search</a> </td> <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NeurIPS-2019-TAS.md">NeurIPS-2019-TAS.md</a> </td> </tr> <tr> <!-- (2-nd row) --> <td align="center" valign="middle"> DARTS </td> <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1806.09055">DARTS: Differentiable Architecture Search</a> </td> <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/ICLR-2019-DARTS.md">ICLR-2019-DARTS.md</a> </td> </tr> <tr> <!-- (3-nd row) --> <td align="center" valign="middle"> GDAS </td> <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.04465">Searching for A Robust Neural Architecture in Four GPU Hours</a> </td> <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/CVPR-2019-GDAS.md">CVPR-2019-GDAS.md</a> </td> </tr> <tr> <!-- (4-rd row) --> <td align="center" valign="middle"> SETN </td> <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.05733">One-Shot Neural Architecture Search via Self-Evaluated Template Network</a> </td> <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/ICCV-2019-SETN.md">ICCV-2019-SETN.md</a> </td> </tr> <tr> <!-- (5-th row) --> <td align="center" valign="middle"> NAS-Bench-201 </td> <td align="center" valign="middle"> <a href="https://openreview.net/forum?id=HJxyZkBKDr"> NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search</a> </td> <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td> </tr> <tr> <!-- (6-th row) --> <td align="center" valign="middle"> NATS-Bench </td> <td align="center" valign="middle"> <a href="https://xuanyidong.com/assets/projects/NATS-Bench"> NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size</a> </td> <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NATS-Bench.md">NATS-Bench.md</a> </td> </tr> <tr> <!-- (7-th row) --> <td align="center" valign="middle"> ... </td> <td align="center" valign="middle"> ENAS / REA / REINFORCE / BOHB </td> <td align="center" valign="middle"> Please check the original papers </td> <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/NATS-Bench.md">NATS-Bench.md</a> </td> </tr> <tr> <!-- (start second block) --> <td rowspan="1" align="center" valign="middle" halign="middle"> HPO </td> <td align="center" valign="middle"> HPO-CG </td> <td align="center" valign="middle"> Hyperparameter optimization with approximate gradient </td> <td align="center" valign="middle"> coming soon </a> </td> </tr> <tr> <!-- (start third block) --> <td rowspan="1" align="center" valign="middle" halign="middle"> Basic </td> <td align="center" valign="middle"> ResNet </td> <td align="center" valign="middle"> Deep Learning-based Image Classification </td> <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/main/docs/BASELINE.md">BASELINE.md</a> </a> </td> </tr> </tbody> </table> ## Requirements and Preparation Please install `Python>=3.6` and `PyTorch>=1.3.0`. (You could also run this project in lower versions of Python and PyTorch, but may have bugs). Some visualization codes may require `opencv`. CIFAR and ImageNet should be downloaded and extracted into `$TORCH_HOME`. Some methods use knowledge distillation (KD), which require pre-trained models. Please download these models from [Google Drive](https://drive.google.com/open?id=1ANmiYEGX-IQZTfH8w0aSpj-Wypg-0DR-) (or train by yourself) and save into `.latent-data`. Please use ``` git clone --recurse-submodules git@github.com:D-X-Y/AutoDL-Projects.git XAutoDL git clone --recurse-submodules https://github.com/D-X-Y/AutoDL-Projects.git XAutoDL ``` to download this repo with submodules. ## Citation If you find that this project helps your research, please consider citing the related paper: ``` @article{dong2020autohas, title={{AutoHAS}: Efficient Hyperparameter and Architecture Search}, author={Dong, Xuanyi and Tan, Mingxing and Yu, Adams Wei and Peng, Daiyi and Gabrys, Bogdan and Le, Quoc V}, journal={arXiv preprint arXiv:2006.03656}, year={2020} } @article{dong2021nats, title = {{NATS-Bench}: Benchmarking NAS Algorithms for Architecture Topology and Size}, author = {Dong, Xuanyi and Liu, Lu and Musial, Katarzyna and Gabrys, Bogdan}, doi = {10.1109/TPAMI.2021.3054824}, journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, year = {2021}, note = {\mbox{doi}:\url{10.1109/TPAMI.2021.3054824}} } @inproceedings{dong2020nasbench201, title = {{NAS-Bench-201}: Extending the Scope of Reproducible Neural Architecture Search}, author = {Dong, Xuanyi and Yang, Yi}, booktitle = {International Conference on Learning Representations (ICLR)}, url = {https://openreview.net/forum?id=HJxyZkBKDr}, year = {2020} } @inproceedings{dong2019tas, title = {Network Pruning via Transformable Architecture Search}, author = {Dong, Xuanyi and Yang, Yi}, booktitle = {Neural Information Processing Systems (NeurIPS)}, pages = {760--771}, year = {2019} } @inproceedings{dong2019one, title = {One-Shot Neural Architecture Search via Self-Evaluated Template Network}, author = {Dong, Xuanyi and Yang, Yi}, booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)}, pages = {3681--3690}, year = {2019} } @inproceedings{dong2019search, title = {Searching for A Robust Neural Architecture in Four GPU Hours}, author = {Dong, Xuanyi and Yang, Yi}, booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, pages = {1761--1770}, year = {2019} } ``` # Others If you want to contribute to this repo, please see [CONTRIBUTING.md](.github/CONTRIBUTING.md). Besides, please follow [CODE-OF-CONDUCT.md](.github/CODE-OF-CONDUCT.md). We use [`black`](https://github.com/psf/black) for Python code formatter. Please use `black . -l 88`. # License The entire codebase is under the [MIT license](LICENSE.md).