################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 # ################################################## from __future__ import division from __future__ import print_function import os import math import numpy as np import pandas as pd import copy from functools import partial from typing import Optional import logging from qlib.utils import ( unpack_archive_with_buffer, save_multiple_parts_file, create_save_path, drop_nan_by_y_index, ) from qlib.log import get_module_logger, TimeInspector import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data as th_data import layers as xlayers from utils import count_parameters from qlib.model.base import Model from qlib.data.dataset import DatasetH from qlib.data.dataset.handler import DataHandlerLP default_net_config = dict(d_feat=6, hidden_size=48, depth=5, pos_drop=0.1) default_opt_config = dict(epochs=200, lr=0.001, batch_size=2000, early_stop=20, loss="mse", optimizer="adam") class QuantTransformer(Model): """Transformer-based Quant Model""" def __init__(self, net_config=None, opt_config=None, metric="", GPU=0, seed=None, **kwargs): # Set logger. self.logger = get_module_logger("QuantTransformer") self.logger.info("QuantTransformer pytorch version...") # set hyper-parameters. self.net_config = net_config or default_net_config self.opt_config = opt_config or default_opt_config self.metric = metric self.device = torch.device("cuda:{:}".format(GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu") self.seed = seed self.logger.info( "Transformer parameters setting:" "\nnet_config : {:}" "\nopt_config : {:}" "\nmetric : {:}" "\ndevice : {:}" "\nseed : {:}".format( self.net_config, self.opt_config, self.metric, self.device, self.seed, ) ) if self.seed is not None: np.random.seed(self.seed) torch.manual_seed(self.seed) self.model = TransformerModel( d_feat=self.net_config["d_feat"], embed_dim=self.net_config["hidden_size"], depth=self.net_config["depth"], pos_drop=self.net_config["pos_drop"], ) self.logger.info("model: {:}".format(self.model)) self.logger.info("model size: {:.3f} MB".format(count_parameters(self.model))) if self.opt_config["optimizer"] == "adam": self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.opt_config["lr"]) elif self.opt_config["optimizer"] == "adam": self.train_optimizer = optim.SGD(self.model.parameters(), lr=self.opt_config["lr"]) else: raise NotImplementedError("optimizer {:} is not supported!".format(optimizer)) self.fitted = False self.model.to(self.device) @property def use_gpu(self): self.device == torch.device("cpu") def loss_fn(self, pred, label): mask = ~torch.isnan(label) if self.opt_config["loss"] == "mse": return F.mse_loss(pred[mask], label[mask]) else: raise ValueError("unknown loss `{:}`".format(self.loss)) def metric_fn(self, pred, label): mask = torch.isfinite(label) if self.metric == "" or self.metric == "loss": return -self.loss_fn(pred[mask], label[mask]) else: raise ValueError("unknown metric `{:}`".format(self.metric)) def train_epoch(self, xloader, model, loss_fn, optimizer): model.train() scores, losses = [], [] for ibatch, (feats, labels) in enumerate(xloader): feats = feats.to(self.device, non_blocking=True) labels = labels.to(self.device, non_blocking=True) # forward the network preds = model(feats) loss = loss_fn(preds, labels) with torch.no_grad(): score = self.metric_fn(preds, labels) losses.append(loss.item()) scores.append(loss.item()) # optimize the network optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_value_(model.parameters(), 3.0) optimizer.step() return np.mean(losses), np.mean(scores) def test_epoch(self, xloader, model, loss_fn, metric_fn): model.eval() scores, losses = [], [] with torch.no_grad(): for ibatch, (feats, labels) in enumerate(xloader): feats = feats.to(self.device, non_blocking=True) labels = labels.to(self.device, non_blocking=True) # forward the network preds = model(feats) loss = loss_fn(preds, labels) score = self.metric_fn(preds, labels) losses.append(loss.item()) scores.append(loss.item()) return np.mean(losses), np.mean(scores) def fit( self, dataset: DatasetH, evals_result=dict(), verbose=True, save_path=None, ): def _prepare_dataset(df_data): return th_data.TensorDataset( torch.from_numpy(df_data["feature"].values).float(), torch.from_numpy(df_data["label"].values).squeeze().float(), ) df_train, df_valid, df_test = dataset.prepare( ["train", "valid", "test"], col_set=["feature", "label"], data_key=DataHandlerLP.DK_L, ) train_dataset, valid_dataset, test_dataset = ( _prepare_dataset(df_train), _prepare_dataset(df_valid), _prepare_dataset(df_test), ) train_loader = th_data.DataLoader( train_dataset, batch_size=self.opt_config["batch_size"], shuffle=True, drop_last=False, pin_memory=True ) valid_loader = th_data.DataLoader( valid_dataset, batch_size=self.opt_config["batch_size"], shuffle=False, drop_last=False, pin_memory=True ) test_loader = th_data.DataLoader( test_dataset, batch_size=self.opt_config["batch_size"], shuffle=False, drop_last=False, pin_memory=True ) if save_path == None: save_path = create_save_path(save_path) stop_steps, best_score, best_epoch = 0, -np.inf, 0 train_loss = 0 evals_result["train"] = [] evals_result["valid"] = [] # train self.logger.info("Fit procedure for [{:}] with save path={:}".format(self.__class__.__name__, save_path)) def _internal_test(): train_loss, train_score = self.test_epoch(train_loader, self.model, self.loss_fn, self.metric_fn) valid_loss, valid_score = self.test_epoch(valid_loader, self.model, self.loss_fn, self.metric_fn) test_loss, test_score = self.test_epoch(test_loader, self.model, self.loss_fn, self.metric_fn) xstr = "train-score={:.6f}, valid-score={:.6f}, test-score={:.6f}".format( train_score, valid_score, test_score ) return dict(train=train_score, valid=valid_score, test=test_score), xstr _, eval_str = _internal_test() self.logger.info("Before Training: {:}".format(eval_str)) for iepoch in range(self.opt_config["epochs"]): self.logger.info("Epoch={:03d}/{:03d} ::==>>".format(iepoch, self.opt_config["epochs"])) train_loss, train_score = self.train_epoch(train_loader, self.model, self.loss_fn, self.train_optimizer) self.logger.info("Training :: loss={:.6f}, score={:.6f}".format(train_loss, train_score)) eval_score_dict, eval_str = _internal_test() self.logger.info("Evaluating :: {:}".format(eval_str)) evals_result["train"].append(eval_score_dict["train"]) evals_result["valid"].append(eval_score_dict["valid"]) if eval_score_dict["valid"] > best_score: stop_steps, best_epoch, best_score = 0, iepoch, eval_score_dict["valid"] best_param = copy.deepcopy(self.model.state_dict()) else: stop_steps += 1 if stop_steps >= self.opt_config["early_stop"]: self.logger.info("early stop at {:}-th epoch, where the best is @{:}".format(iepoch, best_epoch)) break self.logger.info("The best score: {:.6f} @ {:02d}-th epoch".format(best_score, best_epoch)) self.model.load_state_dict(best_param) torch.save(best_param, save_path) if self.use_gpu: torch.cuda.empty_cache() self.fitted = True def predict(self, dataset): if not self.fitted: raise ValueError("model is not fitted yet!") x_test = dataset.prepare("test", col_set="feature") index = x_test.index self.model.eval() x_values = x_test.values sample_num = x_values.shape[0] preds = [] for begin in range(sample_num)[:: self.batch_size]: if sample_num - begin < self.batch_size: end = sample_num else: end = begin + self.batch_size x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device) with torch.no_grad(): if self.use_gpu: pred = self.model(x_batch).detach().cpu().numpy() else: pred = self.model(x_batch).detach().numpy() preds.append(pred) return pd.Series(np.concatenate(preds), index=index) # Real Model class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): super(Attention, self).__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or math.sqrt(head_dim) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, attn_drop=0.0, mlp_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, ): super(Block, self).__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=mlp_drop ) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=mlp_drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class SimpleEmbed(nn.Module): def __init__(self, d_feat, embed_dim): super(SimpleEmbed, self).__init__() self.d_feat = d_feat self.embed_dim = embed_dim self.proj = nn.Linear(d_feat, embed_dim) def forward(self, x): x = x.reshape(len(x), self.d_feat, -1) # [N, F*T] -> [N, F, T] x = x.permute(0, 2, 1) # [N, F, T] -> [N, T, F] out = self.proj(x) * math.sqrt(self.embed_dim) return out class TransformerModel(nn.Module): def __init__( self, d_feat: int, embed_dim: int = 64, depth: int = 4, num_heads: int = 4, mlp_ratio: float = 4.0, qkv_bias: bool = True, qk_scale: Optional[float] = None, pos_drop=0.0, mlp_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, norm_layer=None, ): """ Args: d_feat (int, tuple): input image size embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True qk_scale (float): override default qk scale of head_dim ** -0.5 if set pos_drop (float): dropout rate for the positional embedding mlp_drop_rate (float): the dropout rate for MLP layers in a block attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate norm_layer: (nn.Module): normalization layer """ super(TransformerModel, self).__init__() self.embed_dim = embed_dim self.num_features = embed_dim norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65, dropout=pos_drop) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList( [ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop_rate, mlp_drop=mlp_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, ) for i in range(depth) ] ) self.norm = norm_layer(embed_dim) # regression head self.head = nn.Linear(self.num_features, 1) xlayers.trunc_normal_(self.cls_token, std=0.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): xlayers.trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward_features(self, x): batch, flatten_size = x.shape feats = self.input_embed(x) # batch * 60 * 64 cls_tokens = self.cls_token.expand(batch, -1, -1) # stole cls_tokens impl from Phil Wang, thanks feats_w_ct = torch.cat((cls_tokens, feats), dim=1) feats_w_tp = self.pos_embed(feats_w_ct) xfeats = feats_w_tp for block in self.blocks: xfeats = block(xfeats) xfeats = self.norm(xfeats)[:, 0] return xfeats def forward(self, x): feats = self.forward_features(x) predicts = self.head(feats).squeeze(-1) return predicts