#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
# MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018
from torch import nn
from ..initialization import initialize_resnet
from ..SharedUtils    import parse_channel_info


class ConvBNReLU(nn.Module):
  def __init__(self, in_planes, out_planes, kernel_size, stride, groups, has_bn=True, has_relu=True):
    super(ConvBNReLU, self).__init__()
    padding = (kernel_size - 1) // 2
    self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False)
    if has_bn: self.bn = nn.BatchNorm2d(out_planes)
    else     : self.bn = None
    if has_relu: self.relu = nn.ReLU6(inplace=True)
    else       : self.relu = None
  
  def forward(self, x):
    out = self.conv( x )
    if self.bn:   out = self.bn  ( out )
    if self.relu: out = self.relu( out )
    return out


class InvertedResidual(nn.Module):
  def __init__(self, channels, stride, expand_ratio, additive):
    super(InvertedResidual, self).__init__()
    self.stride = stride
    assert stride in [1, 2], 'invalid stride : {:}'.format(stride)
    assert len(channels) in [2, 3], 'invalid channels : {:}'.format(channels)

    if len(channels) == 2:
      layers = []
    else:
      layers = [ConvBNReLU(channels[0], channels[1], 1, 1, 1)]
    layers.extend([
      # dw
      ConvBNReLU(channels[-2], channels[-2], 3, stride, channels[-2]),
      # pw-linear
      ConvBNReLU(channels[-2], channels[-1], 1, 1, 1, True, False),
    ])
    self.conv = nn.Sequential(*layers)
    self.additive = additive
    if self.additive and channels[0] != channels[-1]:
      self.shortcut = ConvBNReLU(channels[0], channels[-1], 1, 1, 1, True, False)
    else:
      self.shortcut = None
    self.out_dim  = channels[-1]

  def forward(self, x):
    out = self.conv(x)
    # if self.additive: return additive_func(out, x)
    if self.shortcut: return out + self.shortcut(x)
    else            : return out


class InferMobileNetV2(nn.Module):
  def __init__(self, num_classes, xchannels, xblocks, dropout):
    super(InferMobileNetV2, self).__init__()
    block = InvertedResidual
    inverted_residual_setting = [
      # t, c,  n, s
      [1, 16 , 1, 1],
      [6, 24 , 2, 2],
      [6, 32 , 3, 2],
      [6, 64 , 4, 2],
      [6, 96 , 3, 1],
      [6, 160, 3, 2],
      [6, 320, 1, 1],
    ]
    assert len(inverted_residual_setting) == len(xblocks), 'invalid number of layers : {:} vs {:}'.format(len(inverted_residual_setting), len(xblocks))
    for block_num, ir_setting in zip(xblocks, inverted_residual_setting):
      assert block_num <= ir_setting[2], '{:} vs {:}'.format(block_num, ir_setting)
    xchannels = parse_channel_info(xchannels)
    #for i, chs in enumerate(xchannels):
    #  if i > 0: assert chs[0] == xchannels[i-1][-1], 'Layer[{:}] is invalid {:} vs {:}'.format(i, xchannels[i-1], chs)
    self.xchannels = xchannels
    self.message     = 'InferMobileNetV2 : xblocks={:}'.format(xblocks)
    # building first layer
    features = [ConvBNReLU(xchannels[0][0], xchannels[0][1], 3, 2, 1)]
    last_channel_idx = 1

    # building inverted residual blocks
    for stage, (t, c, n, s) in enumerate(inverted_residual_setting):
      for i in range(n):
        stride = s if i == 0 else 1
        additv = True if i > 0 else False
        module = block(self.xchannels[last_channel_idx], stride, t, additv)
        features.append(module)
        self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, Cs={:}, stride={:}, expand={:}, original-C={:}".format(stage, i, n, len(features), self.xchannels[last_channel_idx], stride, t, c)
        last_channel_idx += 1
        if i + 1 == xblocks[stage]:
          out_channel = module.out_dim
          for iiL in range(i+1, n):
            last_channel_idx += 1
          self.xchannels[last_channel_idx][0] = module.out_dim
          break
    # building last several layers
    features.append(ConvBNReLU(self.xchannels[last_channel_idx][0], self.xchannels[last_channel_idx][1], 1, 1, 1))
    assert last_channel_idx + 2 == len(self.xchannels), '{:} vs {:}'.format(last_channel_idx, len(self.xchannels))
    # make it nn.Sequential
    self.features = nn.Sequential(*features)

    # building classifier
    self.classifier = nn.Sequential(
      nn.Dropout(dropout),
      nn.Linear(self.xchannels[last_channel_idx][1], num_classes),
    )

    # weight initialization
    self.apply( initialize_resnet )

  def get_message(self):
    return self.message

  def forward(self, inputs):
    features = self.features(inputs)
    vectors  = features.mean([2, 3])
    predicts = self.classifier(vectors)
    return features, predicts