autodl-projects/tests/test_super_vit.py
2021-06-10 21:53:22 +08:00

44 lines
1.4 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
# pytest ./tests/test_super_vit.py -s #
#####################################################
import unittest
from parameterized import parameterized
import torch
from xautodl.xmodels import transformers
from xautodl.utils.flop_benchmark import count_parameters
class TestSuperViT(unittest.TestCase):
"""Test the super re-arrange layer."""
def test_super_vit(self):
model = transformers.get_transformer("vit-base-16")
tensor = torch.rand((2, 3, 224, 224))
print("The tensor shape: {:}".format(tensor.shape))
# print(model)
outs = model(tensor)
print("The output tensor shape: {:}".format(outs.shape))
@parameterized.expand(
[
["vit-cifar10-p4-d4-h4-c32", 32],
["vit-base-16", 224],
["vit-large-16", 224],
["vit-huge-14", 224],
]
)
def test_imagenet(self, name, resolution):
tensor = torch.rand((2, 3, resolution, resolution))
config = transformers.name2config[name]
model = transformers.get_transformer(config)
outs = model(tensor)
size = count_parameters(model, "mb", True)
print(
"{:10s} : size={:.2f}MB, out-shape: {:}".format(
name, size, tuple(outs.shape)
)
)