autodl-projects/xautodl/log_utils/meter.py
2021-05-18 14:08:00 +00:00

121 lines
3.9 KiB
Python

import numpy as np
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0.0
self.avg = 0.0
self.sum = 0.0
self.count = 0.0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __repr__(self):
return "{name}(val={val}, avg={avg}, count={count})".format(
name=self.__class__.__name__, **self.__dict__
)
class RecorderMeter(object):
"""Computes and stores the minimum loss value and its epoch index"""
def __init__(self, total_epoch):
self.reset(total_epoch)
def reset(self, total_epoch):
assert total_epoch > 0, "total_epoch should be greater than 0 vs {:}".format(
total_epoch
)
self.total_epoch = total_epoch
self.current_epoch = 0
self.epoch_losses = np.zeros(
(self.total_epoch, 2), dtype=np.float32
) # [epoch, train/val]
self.epoch_losses = self.epoch_losses - 1
self.epoch_accuracy = np.zeros(
(self.total_epoch, 2), dtype=np.float32
) # [epoch, train/val]
self.epoch_accuracy = self.epoch_accuracy
def update(self, idx, train_loss, train_acc, val_loss, val_acc):
assert (
idx >= 0 and idx < self.total_epoch
), "total_epoch : {} , but update with the {} index".format(
self.total_epoch, idx
)
self.epoch_losses[idx, 0] = train_loss
self.epoch_losses[idx, 1] = val_loss
self.epoch_accuracy[idx, 0] = train_acc
self.epoch_accuracy[idx, 1] = val_acc
self.current_epoch = idx + 1
return self.max_accuracy(False) == self.epoch_accuracy[idx, 1]
def max_accuracy(self, istrain):
if self.current_epoch <= 0:
return 0
if istrain:
return self.epoch_accuracy[: self.current_epoch, 0].max()
else:
return self.epoch_accuracy[: self.current_epoch, 1].max()
def plot_curve(self, save_path):
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt
title = "the accuracy/loss curve of train/val"
dpi = 100
width, height = 1600, 1000
legend_fontsize = 10
figsize = width / float(dpi), height / float(dpi)
fig = plt.figure(figsize=figsize)
x_axis = np.array([i for i in range(self.total_epoch)]) # epochs
y_axis = np.zeros(self.total_epoch)
plt.xlim(0, self.total_epoch)
plt.ylim(0, 100)
interval_y = 5
interval_x = 5
plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x))
plt.yticks(np.arange(0, 100 + interval_y, interval_y))
plt.grid()
plt.title(title, fontsize=20)
plt.xlabel("the training epoch", fontsize=16)
plt.ylabel("accuracy", fontsize=16)
y_axis[:] = self.epoch_accuracy[:, 0]
plt.plot(x_axis, y_axis, color="g", linestyle="-", label="train-accuracy", lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_accuracy[:, 1]
plt.plot(x_axis, y_axis, color="y", linestyle="-", label="valid-accuracy", lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_losses[:, 0]
plt.plot(
x_axis, y_axis * 50, color="g", linestyle=":", label="train-loss-x50", lw=2
)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_losses[:, 1]
plt.plot(
x_axis, y_axis * 50, color="y", linestyle=":", label="valid-loss-x50", lw=2
)
plt.legend(loc=4, fontsize=legend_fontsize)
if save_path is not None:
fig.savefig(save_path, dpi=dpi, bbox_inches="tight")
print("---- save figure {} into {}".format(title, save_path))
plt.close(fig)