autodl-projects/xautodl/models/ImageNet_MobileNetV2.py
2021-05-18 14:08:00 +00:00

118 lines
3.7 KiB
Python

# MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018
from torch import nn
from .initialization import initialize_resnet
class ConvBNReLU(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
super(ConvBNReLU, self).__init__()
padding = (kernel_size - 1) // 2
self.conv = nn.Conv2d(
in_planes,
out_planes,
kernel_size,
stride,
padding,
groups=groups,
bias=False,
)
self.bn = nn.BatchNorm2d(out_planes)
self.relu = nn.ReLU6(inplace=True)
def forward(self, x):
out = self.conv(x)
out = self.bn(out)
out = self.relu(out)
return out
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend(
[
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
]
)
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(
self, num_classes, width_mult, input_channel, last_channel, block_name, dropout
):
super(MobileNetV2, self).__init__()
if block_name == "InvertedResidual":
block = InvertedResidual
else:
raise ValueError("invalid block name : {:}".format(block_name))
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
# building first layer
input_channel = int(input_channel * width_mult)
self.last_channel = int(last_channel * max(1.0, width_mult))
features = [ConvBNReLU(3, input_channel, stride=2)]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = int(c * width_mult)
for i in range(n):
stride = s if i == 0 else 1
features.append(
block(input_channel, output_channel, stride, expand_ratio=t)
)
input_channel = output_channel
# building last several layers
features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1))
# make it nn.Sequential
self.features = nn.Sequential(*features)
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(dropout),
nn.Linear(self.last_channel, num_classes),
)
self.message = "MobileNetV2 : width_mult={:}, in-C={:}, last-C={:}, block={:}, dropout={:}".format(
width_mult, input_channel, last_channel, block_name, dropout
)
# weight initialization
self.apply(initialize_resnet)
def get_message(self):
return self.message
def forward(self, inputs):
features = self.features(inputs)
vectors = features.mean([2, 3])
predicts = self.classifier(vectors)
return features, predicts