autodl-projects/xautodl/models/ImageNet_ResNet.py
2021-05-18 14:08:00 +00:00

218 lines
7.0 KiB
Python

# Deep Residual Learning for Image Recognition, CVPR 2016
import torch.nn as nn
from .initialization import initialize_resnet
def conv3x3(in_planes, out_planes, stride=1, groups=1):
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
groups=groups,
bias=False,
)
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(
self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64
):
super(BasicBlock, self).__init__()
if groups != 1 or base_width != 64:
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(
self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64
):
super(Bottleneck, self).__init__()
width = int(planes * (base_width / 64.0)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = nn.BatchNorm2d(width)
self.conv2 = conv3x3(width, width, stride, groups)
self.bn2 = nn.BatchNorm2d(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(
self,
block_name,
layers,
deep_stem,
num_classes,
zero_init_residual,
groups,
width_per_group,
):
super(ResNet, self).__init__()
# planes = [int(width_per_group * groups * 2 ** i) for i in range(4)]
if block_name == "BasicBlock":
block = BasicBlock
elif block_name == "Bottleneck":
block = Bottleneck
else:
raise ValueError("invalid block-name : {:}".format(block_name))
if not deep_stem:
self.conv = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
else:
self.conv = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
self.inplanes = 64
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(
block, 64, layers[0], stride=1, groups=groups, base_width=width_per_group
)
self.layer2 = self._make_layer(
block, 128, layers[1], stride=2, groups=groups, base_width=width_per_group
)
self.layer3 = self._make_layer(
block, 256, layers[2], stride=2, groups=groups, base_width=width_per_group
)
self.layer4 = self._make_layer(
block, 512, layers[3], stride=2, groups=groups, base_width=width_per_group
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
self.message = (
"block = {:}, layers = {:}, deep_stem = {:}, num_classes = {:}".format(
block, layers, deep_stem, num_classes
)
)
self.apply(initialize_resnet)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride, groups, base_width):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
if stride == 2:
downsample = nn.Sequential(
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
conv1x1(self.inplanes, planes * block.expansion, 1),
nn.BatchNorm2d(planes * block.expansion),
)
elif stride == 1:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
else:
raise ValueError("invalid stride [{:}] for downsample".format(stride))
layers = []
layers.append(
block(self.inplanes, planes, stride, downsample, groups, base_width)
)
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, 1, None, groups, base_width))
return nn.Sequential(*layers)
def get_message(self):
return self.message
def forward(self, x):
x = self.conv(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.fc(features)
return features, logits