autodl-projects/xautodl/models/cell_searchs/search_model_gdas_nasnet.py
2021-05-18 14:08:00 +00:00

198 lines
6.9 KiB
Python

###########################################################################
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
###########################################################################
import torch
import torch.nn as nn
from copy import deepcopy
from .search_cells import NASNetSearchCell as SearchCell
# The macro structure is based on NASNet
class NASNetworkGDAS(nn.Module):
def __init__(
self,
C,
N,
steps,
multiplier,
stem_multiplier,
num_classes,
search_space,
affine,
track_running_stats,
):
super(NASNetworkGDAS, self).__init__()
self._C = C
self._layerN = N
self._steps = steps
self._multiplier = multiplier
self.stem = nn.Sequential(
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C * stem_multiplier),
)
# config for each layer
layer_channels = (
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
)
layer_reductions = (
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
)
num_edge, edge2index = None, None
C_prev_prev, C_prev, C_curr, reduction_prev = (
C * stem_multiplier,
C * stem_multiplier,
C,
False,
)
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(
zip(layer_channels, layer_reductions)
):
cell = SearchCell(
search_space,
steps,
multiplier,
C_prev_prev,
C_prev,
C_curr,
reduction,
reduction_prev,
affine,
track_running_stats,
)
if num_edge is None:
num_edge, edge2index = cell.num_edges, cell.edge2index
else:
assert (
num_edge == cell.num_edges and edge2index == cell.edge2index
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
self.cells.append(cell)
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction
self.op_names = deepcopy(search_space)
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_normal_parameters = nn.Parameter(
1e-3 * torch.randn(num_edge, len(search_space))
)
self.arch_reduce_parameters = nn.Parameter(
1e-3 * torch.randn(num_edge, len(search_space))
)
self.tau = 10
def get_weights(self):
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
xlist += list(self.lastact.parameters()) + list(
self.global_pooling.parameters()
)
xlist += list(self.classifier.parameters())
return xlist
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def get_alphas(self):
return [self.arch_normal_parameters, self.arch_reduce_parameters]
def show_alphas(self):
with torch.no_grad():
A = "arch-normal-parameters :\n{:}".format(
nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu()
)
B = "arch-reduce-parameters :\n{:}".format(
nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu()
)
return "{:}\n{:}".format(A, B)
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self.cells), cell.extra_repr()
)
return string
def extra_repr(self):
return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format(
name=self.__class__.__name__, **self.__dict__
)
def genotype(self):
def _parse(weights):
gene = []
for i in range(self._steps):
edges = []
for j in range(2 + i):
node_str = "{:}<-{:}".format(i, j)
ws = weights[self.edge2index[node_str]]
for k, op_name in enumerate(self.op_names):
if op_name == "none":
continue
edges.append((op_name, j, ws[k]))
edges = sorted(edges, key=lambda x: -x[-1])
selected_edges = edges[:2]
gene.append(tuple(selected_edges))
return gene
with torch.no_grad():
gene_normal = _parse(
torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()
)
gene_reduce = _parse(
torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()
)
return {
"normal": gene_normal,
"normal_concat": list(
range(2 + self._steps - self._multiplier, self._steps + 2)
),
"reduce": gene_reduce,
"reduce_concat": list(
range(2 + self._steps - self._multiplier, self._steps + 2)
),
}
def forward(self, inputs):
def get_gumbel_prob(xins):
while True:
gumbels = -torch.empty_like(xins).exponential_().log()
logits = (xins.log_softmax(dim=1) + gumbels) / self.tau
probs = nn.functional.softmax(logits, dim=1)
index = probs.max(-1, keepdim=True)[1]
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
hardwts = one_h - probs.detach() + probs
if (
(torch.isinf(gumbels).any())
or (torch.isinf(probs).any())
or (torch.isnan(probs).any())
):
continue
else:
break
return hardwts, index
normal_hardwts, normal_index = get_gumbel_prob(self.arch_normal_parameters)
reduce_hardwts, reduce_index = get_gumbel_prob(self.arch_reduce_parameters)
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
hardwts, index = reduce_hardwts, reduce_index
else:
hardwts, index = normal_hardwts, normal_index
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
out = self.lastact(s1)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits