215 lines
9.0 KiB
Python
215 lines
9.0 KiB
Python
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
|
|
###################################################################
|
|
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale #
|
|
# required to install hpbandster ##################################
|
|
# pip install hpbandster ##################################
|
|
###################################################################
|
|
# python exps/algos-v2/bohb.py --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3
|
|
###################################################################
|
|
import os, sys, time, random, argparse
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
import torch
|
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
|
from config_utils import load_config
|
|
from datasets import get_datasets, SearchDataset
|
|
from procedures import prepare_seed, prepare_logger
|
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
|
from nas_201_api import NASBench201API as API
|
|
from models import CellStructure, get_search_spaces
|
|
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
|
|
import ConfigSpace
|
|
from hpbandster.optimizers.bohb import BOHB
|
|
import hpbandster.core.nameserver as hpns
|
|
from hpbandster.core.worker import Worker
|
|
|
|
|
|
def get_topology_config_space(search_space, max_nodes=4):
|
|
cs = ConfigSpace.ConfigurationSpace()
|
|
#edge2index = {}
|
|
for i in range(1, max_nodes):
|
|
for j in range(i):
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter(node_str, search_space))
|
|
return cs
|
|
|
|
|
|
def get_size_config_space(search_space):
|
|
cs = ConfigSpace.ConfigurationSpace()
|
|
import pdb; pdb.set_trace()
|
|
#edge2index = {}
|
|
for i in range(1, max_nodes):
|
|
for j in range(i):
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter(node_str, search_space))
|
|
return cs
|
|
|
|
|
|
def config2topology_func(max_nodes=4):
|
|
def config2structure(config):
|
|
genotypes = []
|
|
for i in range(1, max_nodes):
|
|
xlist = []
|
|
for j in range(i):
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
op_name = config[node_str]
|
|
xlist.append((op_name, j))
|
|
genotypes.append( tuple(xlist) )
|
|
return CellStructure( genotypes )
|
|
return config2structure
|
|
|
|
|
|
class MyWorker(Worker):
|
|
|
|
def __init__(self, *args, convert_func=None, dataname=None, nas_bench=None, time_budget=None, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.convert_func = convert_func
|
|
self._dataname = dataname
|
|
self._nas_bench = nas_bench
|
|
self.time_budget = time_budget
|
|
self.seen_archs = []
|
|
self.sim_cost_time = 0
|
|
self.real_cost_time = 0
|
|
self.is_end = False
|
|
|
|
def get_the_best(self):
|
|
assert len(self.seen_archs) > 0
|
|
best_index, best_acc = -1, None
|
|
for arch_index in self.seen_archs:
|
|
info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True)
|
|
vacc = info['valid-accuracy']
|
|
if best_acc is None or best_acc < vacc:
|
|
best_acc = vacc
|
|
best_index = arch_index
|
|
assert best_index != -1
|
|
return best_index
|
|
|
|
def compute(self, config, budget, **kwargs):
|
|
start_time = time.time()
|
|
structure = self.convert_func( config )
|
|
arch_index = self._nas_bench.query_index_by_arch( structure )
|
|
info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True)
|
|
cur_time = info['train-all-time'] + info['valid-per-time']
|
|
cur_vacc = info['valid-accuracy']
|
|
self.real_cost_time += (time.time() - start_time)
|
|
if self.sim_cost_time + cur_time <= self.time_budget and not self.is_end:
|
|
self.sim_cost_time += cur_time
|
|
self.seen_archs.append( arch_index )
|
|
return ({'loss': 100 - float(cur_vacc),
|
|
'info': {'seen-arch' : len(self.seen_archs),
|
|
'sim-test-time' : self.sim_cost_time,
|
|
'current-arch' : arch_index}
|
|
})
|
|
else:
|
|
self.is_end = True
|
|
return ({'loss': 100,
|
|
'info': {'seen-arch' : len(self.seen_archs),
|
|
'sim-test-time' : self.sim_cost_time,
|
|
'current-arch' : None}
|
|
})
|
|
|
|
|
|
def main(xargs, api):
|
|
torch.set_num_threads(4)
|
|
prepare_seed(xargs.rand_seed)
|
|
logger = prepare_logger(args)
|
|
|
|
logger.log('{:} use api : {:}'.format(time_string(), api))
|
|
search_space = get_search_spaces(xargs.search_space, 'nas-bench-301')
|
|
if xargs.search_space == 'tss':
|
|
cs = get_topology_config_space(xargs.max_nodes, search_space)
|
|
config2structure = config2topology_func(xargs.max_nodes)
|
|
else:
|
|
cs = get_size_config_space(xargs.max_nodes, search_space)
|
|
import pdb; pdb.set_trace()
|
|
|
|
hb_run_id = '0'
|
|
|
|
NS = hpns.NameServer(run_id=hb_run_id, host='localhost', port=0)
|
|
ns_host, ns_port = NS.start()
|
|
num_workers = 1
|
|
|
|
workers = []
|
|
for i in range(num_workers):
|
|
w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, dataname=dataname, nas_bench=nas_bench, time_budget=xargs.time_budget, run_id=hb_run_id, id=i)
|
|
w.run(background=True)
|
|
workers.append(w)
|
|
|
|
start_time = time.time()
|
|
bohb = BOHB(configspace=cs,
|
|
run_id=hb_run_id,
|
|
eta=3, min_budget=12, max_budget=200,
|
|
nameserver=ns_host,
|
|
nameserver_port=ns_port,
|
|
num_samples=xargs.num_samples,
|
|
random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor,
|
|
ping_interval=10, min_bandwidth=xargs.min_bandwidth)
|
|
|
|
results = bohb.run(xargs.n_iters, min_n_workers=num_workers)
|
|
|
|
bohb.shutdown(shutdown_workers=True)
|
|
NS.shutdown()
|
|
|
|
real_cost_time = time.time() - start_time
|
|
|
|
id2config = results.get_id2config_mapping()
|
|
incumbent = results.get_incumbent_id()
|
|
logger.log('Best found configuration: {:} within {:.3f} s'.format(id2config[incumbent]['config'], real_cost_time))
|
|
best_arch = config2structure( id2config[incumbent]['config'] )
|
|
|
|
info = nas_bench.query_by_arch(best_arch, '200')
|
|
if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
|
|
else : logger.log('{:}'.format(info))
|
|
logger.log('-'*100)
|
|
|
|
logger.log('workers : {:.1f}s with {:} archs'.format(workers[0].time_budget, len(workers[0].seen_archs)))
|
|
logger.close()
|
|
return logger.log_dir, nas_bench.query_index_by_arch( best_arch ), real_cost_time
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser("BOHB: Robust and Efficient Hyperparameter Optimization at Scale")
|
|
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
|
# general arg
|
|
parser.add_argument('--search_space', type=str, choices=['tss', 'sss'], help='Choose the search space.')
|
|
parser.add_argument('--time_budget', type=int, default=20000, help='The total time cost budge for searching (in seconds).')
|
|
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
|
# BOHB
|
|
parser.add_argument('--strategy', default="sampling", type=str, nargs='?', help='optimization strategy for the acquisition function')
|
|
parser.add_argument('--min_bandwidth', default=.3, type=float, nargs='?', help='minimum bandwidth for KDE')
|
|
parser.add_argument('--num_samples', default=64, type=int, nargs='?', help='number of samples for the acquisition function')
|
|
parser.add_argument('--random_fraction', default=.33, type=float, nargs='?', help='fraction of random configurations')
|
|
parser.add_argument('--bandwidth_factor', default=3, type=int, nargs='?', help='factor multiplied to the bandwidth')
|
|
parser.add_argument('--n_iters', default=300, type=int, nargs='?', help='number of iterations for optimization method')
|
|
# log
|
|
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
|
parser.add_argument('--rand_seed', type=int, help='manual seed')
|
|
args = parser.parse_args()
|
|
|
|
if args.search_space == 'tss':
|
|
api = NASBench201API(verbose=False)
|
|
elif args.search_space == 'sss':
|
|
api = NASBench301API(verbose=False)
|
|
else:
|
|
raise ValueError('Invalid search space : {:}'.format(args.search_space))
|
|
|
|
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'BOHB')
|
|
print('save-dir : {:}'.format(args.save_dir))
|
|
|
|
if args.rand_seed < 0:
|
|
save_dir, all_info = None, collections.OrderedDict()
|
|
for i in range(args.loops_if_rand):
|
|
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand))
|
|
args.rand_seed = random.randint(1, 100000)
|
|
save_dir, all_archs, all_total_times = main(args, api)
|
|
all_info[i] = {'all_archs': all_archs,
|
|
'all_total_times': all_total_times}
|
|
save_path = save_dir / 'results.pth'
|
|
print('save into {:}'.format(save_path))
|
|
torch.save(all_info, save_path)
|
|
else:
|
|
main(args, api)
|