autodl-projects/lib/models/ShuffleNetV2.py
2019-09-28 18:24:47 +10:00

134 lines
3.9 KiB
Python

import functools
import torch
import torch.nn as nn
__all__ = ['ShuffleNetV2']
def channel_shuffle(x, groups):
batchsize, num_channels, height, width = x.data.size()
channels_per_group = num_channels // groups
# reshape
x = x.view(batchsize, groups, channels_per_group, height, width)
x = torch.transpose(x, 1, 2).contiguous()
# flatten
x = x.view(batchsize, -1, height, width)
return x
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride):
super(InvertedResidual, self).__init__()
if not (1 <= stride <= 3):
raise ValueError('illegal stride value')
self.stride = stride
branch_features = oup // 2
assert (self.stride != 1) or (inp == branch_features << 1)
pw_conv11 = functools.partial(nn.Conv2d, kernel_size=1, stride=1, padding=0, bias=False)
dw_conv33 = functools.partial(self.depthwise_conv, kernel_size=3, stride=self.stride, padding=1)
if self.stride > 1:
self.branch1 = nn.Sequential(
dw_conv33(inp, inp),
nn.BatchNorm2d(inp),
pw_conv11(inp, branch_features),
nn.BatchNorm2d(branch_features),
nn.ReLU(inplace=True),
)
self.branch2 = nn.Sequential(
pw_conv11(inp if (self.stride > 1) else branch_features, branch_features),
nn.BatchNorm2d(branch_features),
nn.ReLU(inplace=True),
dw_conv33(branch_features, branch_features),
nn.BatchNorm2d(branch_features),
pw_conv11(branch_features, branch_features),
nn.BatchNorm2d(branch_features),
nn.ReLU(inplace=True),
)
@staticmethod
def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
def forward(self, x):
if self.stride == 1:
x1, x2 = x.chunk(2, dim=1)
out = torch.cat((x1, self.branch2(x2)), dim=1)
else:
out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
out = channel_shuffle(out, 2)
return out
class ShuffleNetV2(nn.Module):
def __init__(self, num_classes, stages):
super(ShuffleNetV2, self).__init__()
self.stage_out_channels = stages
assert len(stages) == 5, 'invalid stages : {:}'.format(stages)
self.message = 'stages: ' + ' '.join([str(x) for x in stages])
input_channels = 3
output_channels = self.stage_out_channels[0]
self.conv1 = nn.Sequential(
nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU(inplace=True),
)
input_channels = output_channels
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
stage_names = ['stage{:}'.format(i) for i in [2, 3, 4]]
stage_repeats = [4, 8, 4]
for name, repeats, output_channels in zip(
stage_names, stage_repeats, self.stage_out_channels[1:]):
seq = [InvertedResidual(input_channels, output_channels, 2)]
for i in range(repeats - 1):
seq.append(InvertedResidual(output_channels, output_channels, 1))
setattr(self, name, nn.Sequential(*seq))
input_channels = output_channels
output_channels = self.stage_out_channels[-1]
self.conv5 = nn.Sequential(
nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU(inplace=True),
)
self.fc = nn.Linear(output_channels, num_classes)
def get_message(self):
return self.message
def forward(self, inputs):
x = self.conv1( inputs )
x = self.maxpool(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.conv5(x)
features = x.mean([2, 3]) # globalpool
predicts = self.fc(features)
return features, predicts
#@staticmethod
#def _getStages(mult):
# stages = {
# '0.5': [24, 48, 96 , 192, 1024],
# '1.0': [24, 116, 232, 464, 1024],
# '1.5': [24, 176, 352, 704, 1024],
# '2.0': [24, 244, 488, 976, 2048],
# }
# return stages[str(mult)]