123 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			123 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| import torch
 | |
| 
 | |
| from collections import Counter
 | |
| 
 | |
| 
 | |
| class Dictionary(object):
 | |
|   def __init__(self):
 | |
|     self.word2idx = {}
 | |
|     self.idx2word = []
 | |
|     self.counter = Counter()
 | |
|     self.total = 0
 | |
| 
 | |
|   def add_word(self, word):
 | |
|     if word not in self.word2idx:
 | |
|       self.idx2word.append(word)
 | |
|       self.word2idx[word] = len(self.idx2word) - 1
 | |
|     token_id = self.word2idx[word]
 | |
|     self.counter[token_id] += 1
 | |
|     self.total += 1
 | |
|     return self.word2idx[word]
 | |
| 
 | |
|   def __len__(self):
 | |
|     return len(self.idx2word)
 | |
| 
 | |
| 
 | |
| class Corpus(object):
 | |
|   def __init__(self, path):
 | |
|     self.dictionary = Dictionary()
 | |
|     self.train = self.tokenize(os.path.join(path, 'train.txt'))
 | |
|     self.valid = self.tokenize(os.path.join(path, 'valid.txt'))
 | |
|     self.test = self.tokenize(os.path.join(path, 'test.txt'))
 | |
| 
 | |
|   def tokenize(self, path):
 | |
|     """Tokenizes a text file."""
 | |
|     assert os.path.exists(path)
 | |
|     # Add words to the dictionary
 | |
|     with open(path, 'r', encoding='utf-8') as f:
 | |
|       tokens = 0
 | |
|       for line in f:
 | |
|         words = line.split() + ['<eos>']
 | |
|         tokens += len(words)
 | |
|         for word in words:
 | |
|           self.dictionary.add_word(word)
 | |
| 
 | |
|     # Tokenize file content
 | |
|     with open(path, 'r', encoding='utf-8') as f:
 | |
|       ids = torch.LongTensor(tokens)
 | |
|       token = 0
 | |
|       for line in f:
 | |
|         words = line.split() + ['<eos>']
 | |
|         for word in words:
 | |
|           ids[token] = self.dictionary.word2idx[word]
 | |
|           token += 1
 | |
| 
 | |
|     return ids
 | |
| 
 | |
| class SentCorpus(object):
 | |
|   def __init__(self, path):
 | |
|     self.dictionary = Dictionary()
 | |
|     self.train = self.tokenize(os.path.join(path, 'train.txt'))
 | |
|     self.valid = self.tokenize(os.path.join(path, 'valid.txt'))
 | |
|     self.test = self.tokenize(os.path.join(path, 'test.txt'))
 | |
| 
 | |
|   def tokenize(self, path):
 | |
|     """Tokenizes a text file."""
 | |
|     assert os.path.exists(path)
 | |
|     # Add words to the dictionary
 | |
|     with open(path, 'r', encoding='utf-8') as f:
 | |
|       tokens = 0
 | |
|       for line in f:
 | |
|         words = line.split() + ['<eos>']
 | |
|         tokens += len(words)
 | |
|         for word in words:
 | |
|           self.dictionary.add_word(word)
 | |
| 
 | |
|     # Tokenize file content
 | |
|     sents = []
 | |
|     with open(path, 'r', encoding='utf-8') as f:
 | |
|       for line in f:
 | |
|         if not line:
 | |
|           continue
 | |
|         words = line.split() + ['<eos>']
 | |
|         sent = torch.LongTensor(len(words))
 | |
|         for i, word in enumerate(words):
 | |
|           sent[i] = self.dictionary.word2idx[word]
 | |
|         sents.append(sent)
 | |
| 
 | |
|     return sents
 | |
| 
 | |
| class BatchSentLoader(object):
 | |
|   def __init__(self, sents, batch_size, pad_id=0, cuda=False, volatile=False):
 | |
|     self.sents = sents
 | |
|     self.batch_size = batch_size
 | |
|     self.sort_sents = sorted(sents, key=lambda x: x.size(0))
 | |
|     self.cuda = cuda
 | |
|     self.volatile = volatile
 | |
|     self.pad_id = pad_id
 | |
| 
 | |
|   def __next__(self):
 | |
|     if self.idx >= len(self.sort_sents):
 | |
|       raise StopIteration
 | |
| 
 | |
|     batch_size = min(self.batch_size, len(self.sort_sents)-self.idx)
 | |
|     batch = self.sort_sents[self.idx:self.idx+batch_size]
 | |
|     max_len = max([s.size(0) for s in batch])
 | |
|     tensor = torch.LongTensor(max_len, batch_size).fill_(self.pad_id)
 | |
|     for i in range(len(batch)):
 | |
|       s = batch[i]
 | |
|       tensor[:s.size(0),i].copy_(s)
 | |
|     if self.cuda:
 | |
|       tensor = tensor.cuda()
 | |
| 
 | |
|     self.idx += batch_size
 | |
| 
 | |
|     return tensor
 | |
|   
 | |
|   next = __next__
 | |
| 
 | |
|   def __iter__(self):
 | |
|     self.idx = 0
 | |
|     return self
 |