90 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			90 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | |
| import torch.nn as nn
 | |
| from .construct_utils import Cell, Transition
 | |
| 
 | |
| class AuxiliaryHeadCIFAR(nn.Module):
 | |
| 
 | |
|   def __init__(self, C, num_classes):
 | |
|     """assuming input size 8x8"""
 | |
|     super(AuxiliaryHeadCIFAR, self).__init__()
 | |
|     self.features = nn.Sequential(
 | |
|       nn.ReLU(inplace=True),
 | |
|       nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2
 | |
|       nn.Conv2d(C, 128, 1, bias=False),
 | |
|       nn.BatchNorm2d(128),
 | |
|       nn.ReLU(inplace=True),
 | |
|       nn.Conv2d(128, 768, 2, bias=False),
 | |
|       nn.BatchNorm2d(768),
 | |
|       nn.ReLU(inplace=True)
 | |
|     )
 | |
|     self.classifier = nn.Linear(768, num_classes)
 | |
| 
 | |
|   def forward(self, x):
 | |
|     x = self.features(x)
 | |
|     x = self.classifier(x.view(x.size(0),-1))
 | |
|     return x
 | |
| 
 | |
| 
 | |
| class NetworkCIFAR(nn.Module):
 | |
| 
 | |
|   def __init__(self, C, num_classes, layers, auxiliary, genotype):
 | |
|     super(NetworkCIFAR, self).__init__()
 | |
|     self._layers = layers
 | |
| 
 | |
|     stem_multiplier = 3
 | |
|     C_curr = stem_multiplier*C
 | |
|     self.stem = nn.Sequential(
 | |
|       nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
 | |
|       nn.BatchNorm2d(C_curr)
 | |
|     )
 | |
|     
 | |
|     C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
 | |
|     self.cells = nn.ModuleList()
 | |
|     reduction_prev = False
 | |
|     for i in range(layers):
 | |
|       if i in [layers//3, 2*layers//3]:
 | |
|         C_curr *= 2
 | |
|         reduction = True
 | |
|       else:
 | |
|         reduction = False
 | |
|       if reduction and genotype.reduce is None:
 | |
|         cell = Transition(C_prev_prev, C_prev, C_curr, reduction_prev)
 | |
|       else:
 | |
|         cell = Cell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
 | |
|       reduction_prev = reduction
 | |
|       self.cells.append( cell )
 | |
|       C_prev_prev, C_prev = C_prev, cell.multiplier*C_curr
 | |
|       if i == 2*layers//3:
 | |
|         C_to_auxiliary = C_prev
 | |
| 
 | |
|     if auxiliary:
 | |
|       self.auxiliary_head = AuxiliaryHeadCIFAR(C_to_auxiliary, num_classes)
 | |
|     else:
 | |
|       self.auxiliary_head = None
 | |
|     self.global_pooling = nn.AdaptiveAvgPool2d(1)
 | |
|     self.classifier = nn.Linear(C_prev, num_classes)
 | |
|     self.drop_path_prob = -1
 | |
| 
 | |
|   def update_drop_path(self, drop_path_prob):
 | |
|     self.drop_path_prob = drop_path_prob
 | |
| 
 | |
|   def auxiliary_param(self):
 | |
|     if self.auxiliary_head is None: return []
 | |
|     else: return list( self.auxiliary_head.parameters() )
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     s0 = s1 = self.stem(inputs)
 | |
|     for i, cell in enumerate(self.cells):
 | |
|       s0, s1 = s1, cell(s0, s1, self.drop_path_prob)
 | |
|       if i == 2*self._layers//3:
 | |
|         if self.auxiliary_head and self.training:
 | |
|           logits_aux = self.auxiliary_head(s1)
 | |
|     out = self.global_pooling(s1)
 | |
|     out = out.view(out.size(0), -1)
 | |
|     logits = self.classifier(out)
 | |
| 
 | |
|     if self.auxiliary_head and self.training:
 | |
|       return logits, logits_aux
 | |
|     else:
 | |
|       return logits
 |