168 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			168 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #####################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
 | |
| #####################################################
 | |
| import torch.nn as nn
 | |
| import torch.nn.functional as F
 | |
| from ..initialization import initialize_resnet
 | |
| 
 | |
| 
 | |
| class ConvBNReLU(nn.Module):
 | |
|   
 | |
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
 | |
|     super(ConvBNReLU, self).__init__()
 | |
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
 | |
|     else       : self.avg = None
 | |
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
 | |
|     if has_bn  : self.bn  = nn.BatchNorm2d(nOut)
 | |
|     else       : self.bn  = None
 | |
|     if has_relu: self.relu = nn.ReLU(inplace=True)
 | |
|     else       : self.relu = None
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     if self.avg : out = self.avg( inputs )
 | |
|     else        : out = inputs
 | |
|     conv = self.conv( out )
 | |
|     if self.bn  : out = self.bn( conv )
 | |
|     else        : out = conv
 | |
|     if self.relu: out = self.relu( out )
 | |
|     else        : out = out
 | |
| 
 | |
|     return out
 | |
| 
 | |
| 
 | |
| class ResNetBasicblock(nn.Module):
 | |
|   num_conv  = 2
 | |
|   expansion = 1
 | |
|   def __init__(self, iCs, stride):
 | |
|     super(ResNetBasicblock, self).__init__()
 | |
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
 | |
|     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
 | |
|     assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs)
 | |
|     
 | |
|     self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
 | |
|     self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3,      1, 1, False, has_avg=False, has_bn=True, has_relu=False)
 | |
|     residual_in = iCs[0]
 | |
|     if stride == 2:
 | |
|       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
 | |
|       residual_in = iCs[2]
 | |
|     elif iCs[0] != iCs[2]:
 | |
|       self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
 | |
|     else:
 | |
|       self.downsample = None
 | |
|     #self.out_dim  = max(residual_in, iCs[2])
 | |
|     self.out_dim  = iCs[2]
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     basicblock = self.conv_a(inputs)
 | |
|     basicblock = self.conv_b(basicblock)
 | |
| 
 | |
|     if self.downsample is not None:
 | |
|       residual = self.downsample(inputs)
 | |
|     else:
 | |
|       residual = inputs
 | |
|     out = residual + basicblock
 | |
|     return F.relu(out, inplace=True)
 | |
| 
 | |
| 
 | |
| 
 | |
| class ResNetBottleneck(nn.Module):
 | |
|   expansion = 4
 | |
|   num_conv  = 3
 | |
|   def __init__(self, iCs, stride):
 | |
|     super(ResNetBottleneck, self).__init__()
 | |
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
 | |
|     assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
 | |
|     assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs)
 | |
|     self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=True)
 | |
|     self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
 | |
|     self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1,      1, 0, False, has_avg=False, has_bn=True, has_relu=False)
 | |
|     residual_in = iCs[0]
 | |
|     if stride == 2:
 | |
|       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False)
 | |
|       residual_in     = iCs[3]
 | |
|     elif iCs[0] != iCs[3]:
 | |
|       self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False)
 | |
|       residual_in     = iCs[3]
 | |
|     else:
 | |
|       self.downsample = None
 | |
|     #self.out_dim = max(residual_in, iCs[3])
 | |
|     self.out_dim = iCs[3]
 | |
| 
 | |
|   def forward(self, inputs):
 | |
| 
 | |
|     bottleneck = self.conv_1x1(inputs)
 | |
|     bottleneck = self.conv_3x3(bottleneck)
 | |
|     bottleneck = self.conv_1x4(bottleneck)
 | |
| 
 | |
|     if self.downsample is not None:
 | |
|       residual = self.downsample(inputs)
 | |
|     else:
 | |
|       residual = inputs
 | |
|     out = residual + bottleneck
 | |
|     return F.relu(out, inplace=True)
 | |
| 
 | |
| 
 | |
| 
 | |
| class InferCifarResNet(nn.Module):
 | |
| 
 | |
|   def __init__(self, block_name, depth, xblocks, xchannels, num_classes, zero_init_residual):
 | |
|     super(InferCifarResNet, self).__init__()
 | |
| 
 | |
|     #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
 | |
|     if block_name == 'ResNetBasicblock':
 | |
|       block = ResNetBasicblock
 | |
|       assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
 | |
|       layer_blocks = (depth - 2) // 6
 | |
|     elif block_name == 'ResNetBottleneck':
 | |
|       block = ResNetBottleneck
 | |
|       assert (depth - 2) % 9 == 0, 'depth should be one of 164'
 | |
|       layer_blocks = (depth - 2) // 9
 | |
|     else:
 | |
|       raise ValueError('invalid block : {:}'.format(block_name))
 | |
|     assert len(xblocks) == 3, 'invalid xblocks : {:}'.format(xblocks)
 | |
| 
 | |
|     self.message     = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
 | |
|     self.num_classes = num_classes
 | |
|     self.xchannels   = xchannels
 | |
|     self.layers      = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
 | |
|     last_channel_idx = 1
 | |
|     for stage in range(3):
 | |
|       for iL in range(layer_blocks):
 | |
|         num_conv = block.num_conv 
 | |
|         iCs      = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1]
 | |
|         stride   = 2 if stage > 0 and iL == 0 else 1
 | |
|         module   = block(iCs, stride)
 | |
|         last_channel_idx += num_conv
 | |
|         self.xchannels[last_channel_idx] = module.out_dim
 | |
|         self.layers.append  ( module )
 | |
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride)
 | |
|         if iL + 1 == xblocks[stage]: # reach the maximum depth
 | |
|           out_channel = module.out_dim
 | |
|           for iiL in range(iL+1, layer_blocks):
 | |
|             last_channel_idx += num_conv
 | |
|           self.xchannels[last_channel_idx] = module.out_dim
 | |
|           break
 | |
|   
 | |
|     self.avgpool    = nn.AvgPool2d(8)
 | |
|     self.classifier = nn.Linear(self.xchannels[-1], num_classes)
 | |
|     
 | |
|     self.apply(initialize_resnet)
 | |
|     if zero_init_residual:
 | |
|       for m in self.modules():
 | |
|         if isinstance(m, ResNetBasicblock):
 | |
|           nn.init.constant_(m.conv_b.bn.weight, 0)
 | |
|         elif isinstance(m, ResNetBottleneck):
 | |
|           nn.init.constant_(m.conv_1x4.bn.weight, 0)
 | |
| 
 | |
|   def get_message(self):
 | |
|     return self.message
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     x = inputs
 | |
|     for i, layer in enumerate(self.layers):
 | |
|       x = layer( x )
 | |
|     features = self.avgpool(x)
 | |
|     features = features.view(features.size(0), -1)
 | |
|     logits   = self.classifier(features)
 | |
|     return features, logits
 |